实验15椭圆偏振仪测量薄膜厚度和折射率

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验15椭圆偏振仪测量薄膜厚度和折射率在近代科学技术的许多部门中对各种薄膜的研究和应用日益广泛.因此,更加精确和迅速地测定一给定薄膜的光学参数已变得更加迫切和重要.在实际工作中虽然可以利用各种传统的方法测定光学参数(如布儒斯特角法测介质膜的折射率、干涉法测膜厚等),但椭圆偏振法(简称椭偏法)具有独特的优点,是一种较灵敏(可探测生长中的薄膜小于0.1nm的厚度变化)、精度较高(比一般的干涉法高一至二个数量级)、并且是非破坏性测量.是一种先进的测量薄膜纳米级厚度的方法.它能同时测定膜的厚度和折射率(以及吸收系数).因而,目前椭圆偏振法测量已在光学、半导体、生物、医学等诸方面得到较为广泛的应用.这个方法的原理几十年前就已被提出,但由于计算过程太复杂,一般很难直接从测量值求得方程的解析解.直到广泛应用计算机以后,才使该方法具有了新的活力.目前,该方法的应用仍处在不断的发展中.实验目的(1)(1)了解椭圆偏振法测量薄膜参数的基本原理;(2)(2)初步掌握椭圆偏振仪的使用方法,并对薄膜厚度和折射率进行测量.实验原理椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光.根据偏振光在反射前后的偏振状态变化,包括振幅和相位的变化,便可以确定样品表面的许多光学特性.1椭偏方程与薄膜折射率和厚度的测量图15.1图15.1所示为一光学均匀和各向同性的单层介质膜.它有两个平行的界面,通常,上部是折射率为n1的空气(或真空).中间是一层厚度为d折射率为n2的介质薄膜,下层是折射率为n3的衬底,介质薄膜均匀地附在衬底上,当一束光射到膜面上时,在界面1和界面2上形成多次反射和折射,并且各反射光和折射光分别产生多光束干涉.其干涉结果反映了膜的光学特性.设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角.根据折射定律有n1sinφ1=n2sinφ2=n3sinφ3(15.1)光波的电矢量可以分解成在入射面内振动的P分量和垂直于入射面振动的s分量.若用Eip和Eis分别代表入射光的p和s分量,用Erp及Ers分别代表各束反射光K0,K1,K2,…中电矢量的p分量之和及s分量之和,则膜对两个分量的总反射系数Rp和Rs定义为RP=Erp/Eip,Rs=Ers/Eis(15.2)经计算可得式中,r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一次反射的反射系数.2δ为任意相邻两束反射光之间的位相差.根据电磁场的麦克斯韦方程和边界条件,可以证明r1p=tan(φ1-φ2)/tan(φ1+φ2),r1s=-sin(φ1-φ2)/sin(φ1+φ2);r2p=tan(φ2-φ3)/tan(φ2+φ3),r2s=-sin(φ2-φ3)/sin(φ2+φ3).(15.4)式(15.4)即著名的菲涅尔(Fresnel)反射系数公式.由相邻两反射光束间的程差,不难算出.(15.5)式中,λ为真空中的波长,d和n2为介质膜的厚度和折射率.在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和Δ来描述反射光偏振态的变化.它们与总反射系数的关系定义为上式简称为椭偏方程,其中的ψ和Δ称为椭偏参数(由于具有角度量纲也称椭偏角).由式(15.1),式(15.4),式(15.5)和上式可以看出,参数ψ和Δ是n1,n2,n3,λ和d的函数.其中n1,n2,λ和φ1可以是已知量,如果能从实验中测出ψ和Δ的值,原则上就可以算出薄膜的折射率n2和厚度d.这就是椭圆偏振法测量的基本原理.实际上,究竟ψ和Δ的具体物理意义是什么,如何测出它们,以及测出后又如何得到n2和d,均须作进一步的讨论.2ψ和Δ的物理意义用复数形式表示入射光和反射光的p和s分量Eip=|Eip|exp(iθip),Eis=|Eis|exp(iθis);Erp=|Erp|exp(iθrp),Ers=|Ers|exp(iθrs).(15.6)式中各绝对值为相应电矢量的振幅,各θ值为相应界面处的位相.由式(15.6),式(15.2)和式(15.7)式可以得到.(15.7)比较等式两端即可得tanψ=|Erp||Eis|╱|Ers||Eip|(15.8)Δ=(θrp–θrs)-(θip–θis)(15.9)式(15.8)表明,参量ψ与反射前后p和s分量的振幅比有关.而(15.9)式表明,参量Δ与反射前后p和s分量的位相差有关.可见,ψ和Δ直接反映了光在反射前后偏振态的变化.一般规定,ψ和Δ的变化范围分别为0≤ψπ/2和0≤Δ2π.当入射光为椭圆偏振光时,反射后一般为偏振态(指椭圆的形状和方位)发生了变化的椭圆偏振光(除开ψπ/4且Δ=0的情况).为了能直接测得ψ和Δ,须将实验条件作某些限制以使问题简化.也就是要求入射光和反射光满足以下两个条件:(1)要求入射在膜面上的光为等幅椭圆偏振光(即P和S二分量的振幅相等).这时,|Eip|/|Eis|=1,式(15.9)则简化为tanψ=|Erp|/|Ers|.(15.10)(2)要求反射光为一线偏振光.也就是要求θrp–θrs=0(或π),式(15.9)则简化为(15.15)满足后一条件并不困难.因为对某图15.2一特定的膜,总反射系数比Rp/Rs是一定值.式(15.6)决定了⊿也是某一定值.根据(15.9)式可知,只要改变入射光二分量的位相差(θip–θis),直到其大小为一适当值(具体方法见后面的叙述),就可以使(θip–θis)=0(或π),从而使反射光变成一线偏振光.利用一检偏器可以检验此条件是否已满足.以上两条件都得到满足时,式(15.10)表明,tanψ恰好是反射光的p和s分量的幅值比,ψ是反射光线偏振方向与s方向间的夹角,如图15.2所示.式(15.15)则表明,Δ恰好是在膜面上的入射光中s和s分量间的位相差.3ψ和Δ的测量实现椭圆偏振法测量的仪器称为椭圆偏振仪(简称椭偏仪).它的光路原理如图15.3所示.氦氖激光管发出的波长为632.8nm的自然光,先后通过起偏器Q,1/4波片C入射在待测薄膜F上,反射光通过检偏器R射入光电接收器T.如前所述,p和s分别代表平行和垂直于入射面的二个方向.快轴方向f,对于负是指平行于光轴的方向,对于正晶体是图15.3从Q,C和R用虚线引下的三个插图都是迎光线看去的指垂直于光轴的方向.t代表Q的偏振方向,f代表C的快轴方向,tr代表R的偏振方向.慢轴方向l,对于负晶体是指垂直于光轴方向,对于正晶体是指平等于光轴方向.无论起偏器的方位如何,经过它获得的线偏振光再经过1/4波片后一般成为椭圆偏振光.为了在膜面上获得p和s二分量等幅的椭圆偏振光,只须转动1/4波片,使其快轴方向f与s方向的夹角α=土π/4即可(参看后面).为了进一步使反射光变成为一线偏振光E,可转动起偏器,使它的偏振方向t与s方向间的夹角P1为某些特定值.这时,如果转动检偏器R使它的偏振方向tr与Er垂直,则仪器处于消光状态,光电接收器T接收到的光强最小,检流计的示值也最小.本实验中所使用的椭偏仪,可以直接测出消光状态下的起偏角P1和检偏方位角ψ.从式(15.15)可见,要求出Δ,还必须求出P1与(θip–θis)的关系.下面就上述的等幅椭圆偏振光的获得及P1与Δ的关系作进一步的说明.如图15.4所示,设已将1/4波片置于其快轴方向f与s方向间夹角为π/4的方位.E0为通过起偏器后的电矢量,P1为E0与s方向间的夹角(以下简称起偏角).令γ表示椭圆的开口角(即两对角线间的夹角).由晶体光学可知,通过1/4波片后,E0沿快轴的分量Ef与沿慢轴的分量El比较,位相上超前π/2.用数学式可以表达成.(15.12).(15.13)从它们在p和s两个方向的投影可得到p和s的电矢量分别为:图15.4.(15.14).(15.15)由式(15.14)和式(15.15)看出,当1/4波片放置在+π/4角位置时,的确在p和s二方向上得到了幅值均为E0/2的椭圆偏振入射光.p和s的位相差为θip–θis=π/2-2P1.(15.16)另一方面,从图15.4上的几何关系可以得出,开口角γ与起偏角P1的关系为γ/2=π/4-P1γ=π/2-2P1(15.17)则(15.16)式变为θip–θis=γ(15.18)由式(15.15)可得Δ=—(θip-θis)=-γ(15.19)至于检偏方位角ψ,可以在消光状态下直接读出.在测量中,为了提高测量的准确性,常常不是只测一次消光状态所对应的P1和ψ1值,而是将四种(或二种)消光位置所对应的四组(P1,ψ1)),(P2,ψ2),(P3,ψ3)和(P4,ψ4)值测出,经处理后再算出Δ和ψ值.其中,(P1,ψ1)和(P2,ψ2)所对应的是1/4波片快轴相对于S方向置+π/4时的两个消光位置(反射后P和S光的位相差为0或为π时均能合成线偏振光).而(P3,ψ3)和(P4,ψ4)对应的是1/4波片快轴相对于s方向置-π/4的两个消光位置.另外,还可以证明下列关系成立:|p1-p2|=90˚,ψ2=-ψ1.|p3-p4|=90˚,ψ4=-ψ3.求Δ和ψ的方法如下所述.(1)计算Δ值.将P1,P2,P3和P4中大于π/2的减去π/2,不大于π/2的保持原值,并分别记为P1,P2,P3和P4,然后分别求平均.计算中,令和,(15.20)而椭圆开口角γ与和的关系为.(15.21)由式(15.22)算得ψ后,再按表15.1求得⊿值.利用类似于图15.4的作图方法,分别画出起偏角P1在表15.1所指范围内的椭圆偏振光图,由图上的几何关系求出与公式(15.18)类似的γ与P1的关系式,再利用式(15.20)就可以得出表15.1中全部Δ与γ的对应关系.表15.1P1与Δ的对应关系P1=-(θip-θis)0~π/4-γπ/4~π/2γπ/2~3π/4π-γ3π/4~π-(π-γ)(2)(2)计算ψ值:应按公式(15.22)进行计算.(15.22)4折射率n2和膜厚d的计算尽管在原则上由ψ和Δ能算出n2和d,但实际上要直接解出(n2,d)和(Δ,ψ)的函数关系式是很困难的.一般在n1和n2均为实数(即为透明介质的),并且已知衬底折射率n3(可以为复数)的情况下,将(n2,d)和(Δ,ψ)的关系制成数值表或列线图而求得n2和d值.编制数值表的工作通常由计算机来完成.制作的方法是,先测量(或已知)衬底的折射率n2,取定一个入射角φ1,设一个n2的初始值,令δ从0变到180°(变化步长可取π/180,π/90,…等),利用式(15.4),式(15.5)和式(15.6),便可分别算出d,Δ和ψ值.然后将n2增加一个小量进行类似计算.如此继续下去便可得到(n2,d)~(Δ,ψ)的数值表.为了使用方便,常将数值表绘制成列线图.用这种查表(或查图)求n2和d的方法,虽然比较简单方便,但误差较大,故目前日益广泛地采用计算机直接处理数据.另外,求厚度d时还需要说明一点:当n1和n2为实数时,式(15.4)中的φ2为实数,两相邻反射光线间的位相差“亦为实数,其周期为2π.2δ可能随着d的变化而处于不同的周期中.若令2δ=2π时对应的膜层厚度为第一个周期厚度d0,由(15.4)式可以得到由数值表,列线图或计算机算出的d值均是第一周期内的数值.若膜厚大于d0,可用其它方法(如干涉法)确定所在的周期数j,则总膜厚是D=(j-1)d0+d.5金属复折射率的测量以上讨论的主要是透明介质膜光学参数的测量,膜对光的吸收可以忽略不计,因而折射率为实数.金属是导电媒质,电磁波在导电媒质中传播要衰减.故各种导电媒质中都存在不同程度的吸收.理论表明,金属的介电常数是复数,其折射率也是复数.现表示为=n2-iκ式中的实部n2并不相当于透明介质的折射率.换句话说,n2的物理意义不对应于光在真空中速度与介质中速度的比值,所以也不能从它导出折射定律.式中κ称为吸收系数.这里有必要说明的是,当为复数时,一般φ1和φ2也为复数.折射定律在形式上仍然成立,前述的菲涅

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功