浅谈混凝土外加剂对水泥的适应性1外加剂在不同水泥中的应用效果:工作中采用净浆流动度及流动度经时损失来检验外加剂对水泥的适应性。在工作实践中,外加剂与水泥适应性比较好的判别标准归纳为:1)混凝土和易性明显改善,密实性好;2)减水效果显著,混凝土龄期强度大幅度增长;3)能有效地控制坍落度经时损失。水泥适应性差表现为:1)混凝土在搅拌过程中出现异常凝结;2)减水效果不明显;3)新拌混凝土坍落度损失较大;4)混凝土泌水率增加,分层离析现象严重。2影响外加剂对水泥适应性的因素2.1水泥矿物成分对适应性的影响影响水泥适应性的主要因素是水泥中铝酸三钙C3A及硅酸三钙C3S的含量,大量试验验证,C3A含量低而C3S含量较高的适应性较好,混凝土强度也高,而C3A含量越高,掺用外加剂后应用效果越差。由于C3A水化反应快,减水剂进入到水泥后,首先被C3A吸附,在减水剂掺量不变的条件下,C3A含量高的水泥由于大量吸附了减水剂,必然使得溶液中减水剂浓度迅速下降,用于分散C3S和C2S等其它组份的含量显著减少,工作状态明显变差,因此C3A含量高的水泥减水效果较差。2.2调凝剂对水泥适应性的影响水泥常用的调凝剂为石膏,石膏品种又分为:二水石膏、半水石膏和硬石膏,这几种石膏都可作水泥调凝剂,但是硬石膏溶解性差,对有的外加剂如糖钙、木钙等,不但不能促进石膏溶解,反而使水泥因缺少调凝成分而产生混凝土假凝或急凝现象,原因是水泥中用硬石膏或者是工业废料石膏作调凝剂。研究资料表明:调凝剂影响水泥的适应性还与石膏的细度及用量有关,如石膏研磨细度不够会影响石膏的溶解性,即使应用二水石膏也会产生急凝现象,在C3A含量高的水泥中,调凝石膏仍按常用量掺加,不论选用何种石膏,混凝土凝结时间也会提前,这主要是水泥中C3A水化最快,C3A含量较高,少量石膏不能满足它的吸附,从而影响了石膏的调凝效果。但有的水泥C3A含量并不高,采用的是溶解性较好的二水石膏,石膏的用量和细度也合格,却仍会出现不正常凝结现象,经研究发现主要是石膏研磨温度的影响,水泥生产厂为了缩短熟料冷却时间,经常将温度较高的熟料与石膏同磨,二水石膏在150℃高温下脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性差的硬石膏,从而影响了水泥的适应效果。2.3粉煤灰、磨细矿渣等掺合料对水泥适应性的影响掺合料的种类、细度对减水剂的适应性都有影响。由于火山灰质掺合料具有较大的内比表面积,吸附量大,一般来说,减水剂对掺矿渣掺合料水泥的适应性好,而对掺火山灰质混合材的适应性差。对于掺粉煤灰掺合料的水泥,不同品种的粉煤灰,对适应性影响差异很大,优质细粉煤灰,超细粉煤灰中含有球状玻璃体,对减水剂的吸附量小,适应性好。对粗粉煤灰,含碳量高的适应性差。可以得出胶料中所含部分成分对减水剂的吸附量由强到弱为:C3A二水石膏煤矸石C2A矿渣。另外,减水剂与水泥适应性的影响因素还有水泥组份中碱含量,碱含量大,流动度小;水泥越新鲜,适应性越差;水泥温度越高,适应性越差;减水剂自身特性等等。3解决外加剂对水泥适应性的措施3.1改变外加剂的掺入时间,即采用滞水法或二次掺加法、载体流化剂法。3.2适当增加外加剂掺量也有一定的效果。3.3在不影响工作性条件下,适当调整混凝土水灰比,以便保证石膏有一定的溶解度。3.4采用复合缓凝组份,取长补短,或普通减水剂与高效减水剂同掺,主要是因为不同分子结构的相互作用,应用技术效果会明显提高,不但能够降低生产成本,而且弥补了产品单一所带来的缺陷。3.5采用缓释剂或加入引气剂。3.6萘系减水剂坍损大,可换用氨基磺酸盐类或聚羧酸系类减水剂,可减小损失什么是水泥与外加剂适应性?有哪些改善措施?A:水泥与外加剂适应性就是水泥和所用外加剂在使用过程中是否匹配,即将经检验符合有关标准的某种外加剂掺加到用按规定可以使用该品种外加剂的水泥所配制的混凝土中,若能够产生应有的效果,我们就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂之间存在不适应性。产生原因归纳起来有:熟料矿物成分:熟料中C3A,对减水剂分子的吸附程度很高,削弱有效外加剂掺量。水泥的碱含量:水泥中Na2O和K2O含量,对适应性会产生很大影响,尤其是混凝土坍落度损失增大。石膏形态:无水或半水石膏表面极易与减水剂分子形成吸附膜层,使之无法溶出为水泥浆体所需要的SO4-离子,无法快速与水化铝酸盐生存难溶的水化硫铝酸钙,造成C3A大量水化,出现相当数量的相互连接的水化铝酸钙结晶体,导致混凝土坍落度损失过快,重者混凝土异常快凝。水泥细度:水泥颗粒对减水剂分子具有吸附性,水泥颗粒越细、比表面积越大,即对减水剂吸附量也越大。水泥新鲜度:越新鲜的水泥所带的正电性较强,对外加剂的吸附能力就大。水泥温度:水泥温度越高,水泥水化反应加快,混凝土坍落度损失也越快。改善措施(除水泥):外加剂采用后掺法或分批添加法:降低早期对外加剂的吸附量。适当增加减水剂掺量:弥补被吸附的外加剂量。复合一定量的反应性高分子材料:减轻外加剂因吸附程度。适当复配保水、保塑的组分:减缓水化速度。包括选用聚羧酸类等。水泥企业粉磨系统优质高产、节能降耗的技术分析水泥粉体状态与控制方法:水泥的群体颗粒具有高比表面积(单位质量物质的二相界面面积)与多分散性(某一样品中每一颗粒都不尽相同)两大特征。1.1水泥细度:水泥的粒度就是水泥的细度。水泥细度直接影响着水泥的凝结、水化、硬化和强度等一系列物理性能。(1)当水泥磨得很细时,如80μm方孔筛筛余小于1%,控制意义就不大了。国外水泥普遍磨得很细,所以在国外水泥标准中几乎全部取消了这一指标。(2)当粉磨工艺发生变化时,细度值也随之发生变化。如开流磨筛余值偏大,圈流磨筛余值偏小,有时很难根据细度来控制水泥强度。(3)细度值是指0.08mm筛的筛余量,即水泥中≥80μm颗粒的含量(%)。众所周知,≥64μm的水泥颗粒的水化活性已很低了,所以用≥80μm颗粒含量的多少进行水泥质量控制,还不能全面反映水泥的真实活性。1.2水泥的平均粒度:在水泥粉磨过程中,不是均匀的单颗粒,而是包含不同粒径的颗粒体--粒群,所以在评述水泥细度时若只用筛余这一简单的表示方法,差不多有90%多的水泥颗粒都通过筛孔成了筛下物,然而这些筛下物的颗粒大小并不清楚,故筛余量相同时比表面积也会出现很悬殊的现象。平均粒度有几种表示法,如算术平均直径、几何平均直径、调和平均直径等。水泥颗粒的平均粒度是表征水泥颗粒体系的重要几何参数,但所能提供的粒度特性信息则非常有限,因为两个平均粒度相同的粒群,完全可能有不一样的粒度组成(颗粒级配)。1.3水泥比表面积:国外大多规定比表面积指标,一般都采用勃氏比表面积仪测定。我国的硅酸盐水泥和熟料的国家标准规定已与国外标准一致。水泥比表面积与水泥性能之间存在着较好的关系。但用比表面积控制水泥质量时,主要还有下述两方面的不足:(1)比表面积对水泥中细颗粒含量的多少反应很敏感,有时比表面积并不很高,但由于水泥颗粒级配合理,水泥强度却很高。(2)掺有混合材料的水泥比表面积不能真实反映水泥的总外表面积,如掺有火山灰质混合材料,水泥比表面积往往会产生偏高现象。1.4水泥的颗粒级配(粒度分布):即使筛分细度相同或比表面积相近,水泥的性能有时也会表现出较大的差异,原因是粒度分布可能不同(颗粒形状的因素也很重要),因此研究水泥粒度的表征、探索其与水泥强度之间更精确的定量关系,有着重要的意义。国内外长期试验研究证明,水泥颗粒级配是水泥性能的决定因素,目前比较公认的水泥最佳颗粒级配为:3~32μm颗粒对强度的增长起主要作用,其粒度分布是连续的,总量应不低于65%;16~24μm的颗粒对水泥性能尤为重要,含量愈多愈好;小于3μm的细颗粒,易结团,不要超过10%;大于64μm的颗粒活性很小,最好没有。此外,水泥粒度分布(颗粒级配)不当,还会影响水泥水化时的需水量(和易性)。若为了达到水泥砂浆的标准稠度而提高了用水量,则最终会降低硬化后的水泥或混凝土的强度。因此掌握水泥颗粒级配的指标是很重要的。表示水泥粒度分布即颗粒级配的方法有列表法、作图法、矩阵法和函数法。1.5水泥颗粒形貌:20世纪90年代,人们开始研究水泥颗粒形貌对水泥性能的影响。水泥颗粒如果放在电子显微镜下观察,它的形貌并不是圆的,犹如破碎堆积的石灰石,有棱角小的,有棱角大的,有片状的,有针状的。水泥颗粒的形貌与粉磨工艺有关。水泥颗粒形貌通常用圆度系数(f)表示,圆形颗粒的圆度系数等于1,其它形状则都小于1。国外水泥的圆度系数,大多在0.67左右。中国建材科学研究院测定的我国部分大、中型水泥企业水泥的圆度系数平均值为0.63,波动在0.51~0.73之间。同时在对水泥颗粒形貌的研究中还发现:水泥磨机的研磨能力愈强,f值愈大;高细磨水泥f最大;带辊压机预粉碎的磨机磨制的水泥f值也较大。试验研究表明,将水泥颗粒的圆度系数由0.67提高到0.85时,水泥砂浆28d抗压强度可提高20%~30%。水泥颗粒特征及粉磨工艺对水泥强度的影响摘要:介绍了国内某大型现代干法水泥厂的粉磨设备、粉磨工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该厂水泥颗粒特征和熟料、水泥物理性能等实际生产数据的解析,以实例证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。通过调整水泥粉磨设备和粉磨工艺,使水泥粒度分布接近于理想分布,水泥强度可以显著提高。试验表明80μm筛余或比表面积均难以准确反映水泥的粒度分布。通过分析,从水泥性能的角度给出了水泥厂粉磨设备、粉磨工艺和水泥产品颗粒分布的一个参考标准。介绍了该工厂水泥粉磨过程的质量检验、质量控制方法。该厂经验表明,按GB/T17671—1999检验的水泥强度与水泥的比表面积在许多时候没有明确的相关关系,30μm筛余或45μm筛余是水泥粉磨过程适宜的控制指标,在使32μm筛余或45μm筛余处于控制范围的同时,还应该对RRB分布曲线的特征粒径和均匀性系数(n)进行控制,定期检查和控制水泥的粒度分布是非常必要的。本文介绍了国内某大型现代干法水泥厂(中日合资企业,)的粉磨设备、工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该工厂水泥颗粒特征和熟料、水泥性能的分析,以及对工业生产实际数据的分析,证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。同时介绍水泥粉磨过程的质量控制方法和控制指标。希望更直接地为有关方面提供借鉴。1粉磨设备、工艺概况该工厂的水泥粉磨采用CKP立磨+球磨联合闭路粉磨系统,CKP立磨规格为CKP-170;球磨双仓规格为φ3.9m×12m。旋风式选粉机。系统产量115t/h×2。熟料和石膏经过破碎机一次破碎至≤40mm的颗粒占95%以上,喂入CKP立磨,出CKP立磨的物料≤10mm的颗粒占95%以上,约10%返回CKP立磨,约90%出CKP立磨的物料和选粉机回粉共同进入球磨。出球磨物料和粉煤灰共同进入选粉机,选粉机的选粉效率约60%,循环负荷率约260%。水泥品种等级大部分为P.O42.5R,少量为P.II42.5R,两个品种水泥平均电耗39kwh/t-cem。使用占水泥重量比0.02%-0.03%左右的助磨剂。2水泥的颗粒特征2.1颗粒形貌:使用JCM-35C型扫描电镜及配套的统计计算软件对P.O42.5R和P.II42.5R水泥进行了水泥颗粒圆形度分析。P.O42.5R水泥的颗粒圆形系数0.58,P.II42.5R水泥的颗粒圆形系数0.54。我国部分大中型水泥企业水泥的圆形系数平均值为0.63,波动在0.51-0.73之间。国外水泥的圆形系数大约在0.67左右。比较起来,该工厂水泥的圆形系数有待进一步提高。2.2颗粒分布、细度:使用负压筛测定15μm、20μm、32μm、45μm、63μm筛余,使用回归分析的方法求得RRB(Rosin-Rammlar-Bennet)公式中的两个参数:特征粒径和均匀性系数(n)。因为回归的相关系数(r)高达0.999,可以很准确地计算任意孔径筛余。P.II42.5R水泥的特征粒径=19.7μm,均匀性系数n=1.28,比表面积327