单元第三单元内容长方体和正方体主备人赵德芳集体备课课题长、正方体的认识教学目标1.认识长方体和正方体的特征,理解长方体和正方体的关系。2.认识长方体的长、宽、高和正方体的棱长。3.培养学生观察和探何能力,逐步形成空间观念。4.渗透辩证唯物主义的启蒙教育。教学重难点教学重点:长方体和正方体的特征。教学难点:建立长正方体的空间观念。教学准备学生准备长、正方体实物。教学课时第一课时教学过程一、初步感知,导入新课。1、引导谈话。在日常生活中我们所看到的保健箱、牙膏箱、建筑用的砖块等,它们的形状都是长方体。下面请同学们拿出自己带的长方体实物。并说明:“像这种形状的物体在日常生活中还有很多。”2、谁还能说出生活中的长方体实物?3、出示反例教师拿出一个不是长方体的实物(四棱台),问学生是不是一个长方体?学生如果答不出来,教师趁势说明:要判断一个个物体是不是长方体,要用长方体的特征来进行分析、判断。长方体有哪些特征呢?今天我们这节课就来认识长方体的特征(教师板书课题“长方体的认识”)二、启发引导,探索新知。(一)认识长方体1、巧切萝卡妙引思路。2、引导学生切第一刀得到一个面,切第二刀得到两个面,一条棱,切第三刀得到三个面、三条棱、一个顶点。引导谈话:下面我们就从面、棱、顶点这三个方面来研究长方体的特征。2活动一:拿几个长方体的物品来观察,你能发现什么?将小组同学的发现填在下面的表格中。长方体正方体二次备课:通过以上的观察和讨论可以知道:长方体是由6个长方形(也可以有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同。相对的棱长度相等。3活动二:用细木条核橡皮泥,小组同学共同做一个长方体的框架。说一说在制作过程中你有什么发现?你能回答下面的问题吗?(1)长方体的12条棱可以分成几组?(2)相交于同一顶点的三条棱长度相等吗?我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。指出下面长方体的长、宽、高各是多少厘米?4活动三:剪下附页1的图样。(1)把图样中完全相同的长方形涂上同样的颜色。(2)用这个图样做一个长方体。(3)量一量所作长方体的长、宽、高各是多少厘米?(二)认识正方体1、拿一个正方体的物品来观察,想一想它有什么特点?2、剪下附页2的图样做一个正方体,再量出它的棱长是多少厘米?3、揭示长方体和正方体的关系。小组讨论:长方体和正方体有哪些相同点,有哪些不同点?正方体:长方体:正方体具备长方体所有的特征,是长宽高都相等的长方体,我们可以用图来表示它们的关系。三、巩固深化,培养能力。1、填空。(1)长方体有——个面,6个面都是——(也可能2个相对的面是——),相对的面的面积——,长方体有——条棱,每组相对的4条棱的长度都——,长方体有——个顶点。(2)长、宽、高都相等的长方体叫——(也叫——),正方体是——的长方体,6个面都是——,6个面的面积都——,12条棱的长度都——2.判断。(1)长方体和正方体都有6个面、12条棱和8个顶点。()(2)有6个面、12条棱、8个顶点的物体不是长方体就是正方体。()(3)长方体相对面的面积相等。()(4)正方体是特殊的长方体。()(5)相对的4条棱的长度都相等的物体一定是长方体。()3.如图,这是一个纸巾盒(1)这个纸巾盒的前面是什么形状?长和宽各是多少?和它相同的面是哪个?(2)它的右面是什么形状?长和宽各是多少?和它相同的面是哪个?(3)哪几个面的长是24厘米,宽是12厘米?4、这个粉笔盒是什么形状的?它的棱长时多少?有几个面完全相同?四、作业:1、量一量数学书的长、宽、高各是多少,然后说一说每个面的长和宽是多少。从生活中找一个长方听或正方体包装箱,量一量它的长、宽、高各是多少。课后小结:教学反思:单元第三单元内容长方体和正方体主备人赵德芳集体备课课题求长正方体棱长和及相应练习教学目标复习长方体和正方体的特征研究棱长和的计算教学重难点教学重点:1、长正方体的特征。2、棱长和计算方法。教学难点:棱长和计算方法。教学准备模型。教学课时第二课时教学过程一、复习检查:1、判断:(复习相应的概念)(1)、长方体中至少有四条棱的长度相等。()(2)、长方体中有时最多有8条棱的长度相待。()(3)、12条棱都相待的长方体一定是正方体。()(4)、长方体的6个面中至少有4个面是长方形。()(5)、相交于一个点的三条棱中任意一条棱都可以看作是长方体的长,其余两条棱的某一条看作宽,另一条可以看作高。()(6)、长方体中相对的两个面完全相等。()(7)、长方体中有时四个面是完全相等的长方形。()(8)、正方体是长、宽、高都相等的长方体。()(9)、长方体是特殊的正方体。()(10)、长方体中有时两个相对的面是正方形。()二、计算:1、小卖部要做一个长2.2米,宽40厘米,高80厘米的玻璃柜台,先要在柜台各边都安上角铁,这个柜台需要多少米角铁?独立思考,列式计算,小组交流方法。汇报:你是怎样想的?长方体12条棱,分成3组,4个长、4个宽、4条高。40厘米=0.4米80厘米=0.8米2.2×4+0.4×4+0.8×4还可以(2.2+0.4+0.8)×4问:根据是什么?2、为迎接五一国际劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。已知工人俱乐部的长90厘米,宽55厘米,高20厘米,工人叔叔至少需要多长的彩灯线?问:地面的四边不装,是指哪四条边不装?计算至少需要多长的彩灯线,是求几条边的长度和?独立计算练一练:1一个长方体的长是8厘米,宽是16厘米,高是5厘米。它的棱长和是多少厘米?2、一个正方体的棱长和是48厘米,这个正方体的棱长是多少厘米?48÷12=4(厘米)答:这个正方体的棱长是4厘米。三、巩固练习:1一个长方体的所有棱长和72厘米,已知长是8厘米,宽是6厘米。高是多少厘米?2思考:二次备课:(1)、在下面的硬纸板中,按虚线折叠,哪一个能围成一个表面完整的正方体?为什么?(2)、这是长方体的三条棱:(单位:厘米)132①后面的面积是()②哪两个面的面积是6平方厘米?③上下两个面的面积和是()④棱长之和是()4、学雷锋小组为班里做一个节约箱,箱长5分米,宽长4分米,高长3分米。想一想应该怎样做?至少需要多大的纸板?三、作业:探究练习一教学反思:单元第三单元内容长方体和正方体主备人赵德芳集体备课课题长方体和正方体的表面积教学目标1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。3.培养学生的动手操作能力和共同研究问题的习惯。4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。教学重难点教学重点:长方体表面积计算的基本思路和方法。教学难点:根据长方体的长、宽、高,确定每个面的长、宽是多少。教学准备剪刀、长方体盒子、尺、硬纸板、火柴盒。教学课时第三课时教学过程一、创设情境同学们,老师今天给大家带来一件礼物,想把它送给这节课最爱动脑筋,最爱发言的同学,老师觉得这件礼物的盒子不够精美,你们能不能给老师出出主意?(学生说到给礼物盒子包上包装纸,教师说你的想法和我一样。)想知道这张包装纸的大小吗?通过今天的学习,大家就会明白。二、自主探索分组操作,探索长方体的表面积的含义、并建立它们的联系。同学们,现在请大家利用桌面上的长方体、剪刀,看看把一个长方体或正方体的纸盒展开是什么形状的呢?请在展开图中,分别用上下前后左右标明6个面。观察长方体展开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?学生分小组合作操作。三、各小组学生交流汇报结果。可能有以下几种:汇报一:把长方体纸盒6个面剪开,并把相对的面摆放在一起组成三大部分。要求出这个长方体的表面积,只要把这三部分面积相加,第一部分面积为长×宽×2,第二部分面积分为宽×高×2,第三部分面积为长×高×2,得出:长方体的表面积=长×宽×2+宽×高×2+长×高×2。学生汇报后,演示这一种推导思维的全过程。板书:长x宽×2+宽×高×2+长×高×2。汇报二:把长方体纸盒剪成面积相等的两大部分。只要把这两大部分的面积相加,就可以求出这个长方体的表面积,第一大部分面积为长×宽+长×高+宽×高,而第二大部分面积与第一大部分面积相等,只要把第一大部分面积乘2,得出长方体的表面积=(长×宽+长×高+宽×高)×2。师:同学们的这种方法真不错,请大家看屏幕演示。(演示这一种方法推导思维的全过程)板书:(长×宽+长×高+宽×高)×2。汇报三:把长方体纸盒的六个面剪成上下面和四周两大部分。只要把这两大部分相加就可以求出这个长方体的表面积,第一大部分面积为(长×2+宽×2)×高+长×宽×2,并说明长×2+宽×2可以表示这个长方体的底面周长。师:这种方法也很好,请同学看演示。(演示这一推导思维的全过程)板书:(长×2+宽×2)底面周长×高+长×宽×2师:长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。二次备课:四、实践运用1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?说明至少的意思。独立计算,说说你是怎么计算的?2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?想一想怎样计算正方体的表面积呢?4、选择题。1.下图长方体的表面积是①(6×3+3×15)×2②(6×15+3×15)×2③(6×15+3×15+6×3)×2单位:厘米2.一种长方体硬纸盒,底面是边长2分米的正方形,高4分米,现在要在外面全部涂上油漆,油漆面积有多大?①(2×4+2×4+2×2)×2②2×2×4+2×4×2③2×2×2+2×4×4五、拓展创新每个小组的桌面上都有两个火柴盒,现在要将这两个火柴盒包装起来,请大家给它设计一个包装方案,并在小组说一说,你为什么这样包装?学生通过操作、合作、讨论设计出许多包装方案,并说出自己设计包装方案的想法。有的小组同学把面积最大的两个面重叠起来,有的认为这样包装纸装用得最少,而有的则认为有时不单要考虑包装纸的大小,也要考虑包装是否美观、大方,也有的…………六、评价体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。七、作业:1、看书2、实际测量长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。课后小结:教学反思:单元第三单元内容长方体和正方体主备人赵德芳集体备课课题练习六教学目标复习长正方体表面积计算,应用这些知识解决生活问题。教学重难点教学重点:表面积的计算。教学难点:表面积知识在实际中的应用。教学准备火柴盒、尺子。教学课时第四课时教学过程一、复习检查:1、长正方体的特征是什么?2、什么是长正方体的表面积?怎样计算表面积?二、基本练习:二次备课:1、正方体的棱长是8分米,这个正方体的棱长之和是()分米,表面积是()。2、一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是()分米,表面积是()平方分米。3、一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。做10个这样的包装箱,需要纸板多少平方厘米?合多少平方分米?你想怎样做这道题?(先计算出一个长方体的表面积,再求出10个的表面积,最后要换算单位。)独立做。4、有一个长方体的铁罩,长6分米,宽4.5分米,高4分米。做一个这样的铁罩至少需要多少平方分米?铁罩有几个面?计算做一个这样的铁罩至少需要多少平方分米?也就是计算几个面的总面积?(计算出五个面的总面积)哪五个面?独立计算,小组交流方法。方法一:直接计算前后、左右、上面的面积和方法二:计算六个面的表面积减去下面师:计算长正方体的表面积一般需要计算六个面的总面积,但像这样有时要跟据实际需要计算它的表面积。三、解决实际问题