小学四年级数学提高教程——幻方与数阵图【知识点解析】一、幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。幻方又称为魔方,方阵等,它最早起源于我国。宋代数学家杨辉称之为纵横图。关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。伏羲氏凭借着“河图”而演绎出了八卦。后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的图中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。二、幻方问题主要方法1、累加法利用累加的方法可以求出“幻和”和关键位置上的数字。通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。3、比较法利用比较的方法可以直接填出某些位置的数字。注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。4、掌握好3阶幻方中的规律。【例题】1、如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。于是最后,我们终于得到这个至关重要的“幻和”就是45÷3=15。接下来第二步,我们来关心一下中间一格应该填哪个数字。同学们可能会说,中间一定填5,因为1到9的中间数字就是5,而幻方又是上下左右对称的。没错,同学们有这样的数学直观很好,但是为了确定我们的判断,还是需要严格地说明一下。ABCDEFGHI看上面的表格,由于我们还没有填入任何一个数字,所以就用了九个大写字母来表示。下面就需要技巧了,我们现在只考虑包含E的四条直线:因为A+E+I=15,B+E+H=15,C+E+G=15,D+E+F=15,所以如果我们把这四个式子的左右两边分别相加,就可以得到(A+B+C+D+E+F+G+H+I)+3×E=60,而A+B+C+D+E+F+G+H+I不就是所填数的总和吗?不论填法如何,这个数是不变的,它就是45,于是那么我们就得到E=5了。「详解」根据上面的分析,我们知道“幻和”=15,而E=5。从而我们知道A+I=B+H=C+G=D+F=10,也意味着在所有经过中心的直线上,两端的数字奇偶性相同。然后我们可以通过枚举的方法确定每个位置上数字的奇偶性:(大家自己完成)偶奇偶奇5奇偶奇偶我们可以看到,如果4个角上的偶数被确定下来,那么其余4个奇数也就被确定了,所以我们可以只考虑这4个偶数的填法。利用一点简单的乘法原理,大家就可以知道本题共有8种填法。具体填法如下:294276834816753951159357618438672492492438672618357951159753816276834294第1题「评议」这里要强调一点:奇偶性分析并不是解决幻方题的典型方法,只在某些特殊的题目中会被用到。在上面这个解题过程中,我们用到了一点技巧,希望同学们加以领会。本题中,我们看到所有经过中心的直线上,两端数字的平均数就等于中间这个E。那么我们来问一个深入一点的问题:你认为这是在这道题中才产生的特殊性质,还是所有的三阶幻方都应该具有类似的性质?还有,就是上面我们曾经得出的那个“幻和”的3倍就等于这九个数之和的这条性质,它能不能推广到所有的三阶幻方?好,那就让我们来看例2:2、下图是一个三阶幻方,请说明幻和等于3倍的E且D+F=2×E。「分析」有了第1题的基础,大家应该对本题感到不是那么陌生了,只要把第1题的一部分解题过程搬过来就行。这道题也是让大家看一看如何把一个特殊的解题过程变成一条普遍的规律或性质。「详解」首先把题目中的空白格子标上不同的字母,以便表述。ABCDEFGHI首先,只考虑包含E的四条直线,得到A+E+I=“幻和”,B+E+H=“幻和”,C+E+G=“幻和”,D+E+F=“幻和”。然后,把这四个式子的左右两边分别相加,得到(A+B+C+D+E+F+G+H+I)+3×E=4倍的“幻和”,而另一方面,如果我们只考虑幻方的三行,则有A+B+C=D+E+F=G+H+I=“幻和”,因此A+B+C+D+E+F+G+H+I=3倍的“幻和”。所以,3×E=“幻和”,而“幻和”=D+E+F,于是D+F=2×E。说明完毕。「评议」同样的分析办法,还可以得到A+I=B+H=C+G=D+F=2×E(请大家自己说明)。本题回答了第1题评议中提出的两个问题,从而我们得到三阶幻方的两条重要性质。性质1:“幻和”的3倍等于这九个数之和;性质2:所有经过中心的直线上,两端数字的平均数就等于正中间的数字。请大家牢记。那么,三阶幻方还有什么别的更奇妙更有趣的性质吗?3、下图是一个三阶幻方,请说明A+B=2×C。DEF第2题BAC第3题「分析」这是一道难题,它之所以难,就在于条件太少,只有三阶幻方的概念可以用。于是我们就想到利用性质1和2,看看能不能解决问题。当然,只利用题目中的A、B、C三个位置上的数字是不可能做出来的,至少还要利用一个其它位置上的数字作为过渡,比如我们可以选择左上角的数字,并用x来表示它:xBA*C下面我们要用到比较法,其实也就是性质1。「详解」现在考虑*处的数字。如果我们只看上面第一行和右边第一列,可以知道*+C=B+x,也就是*=B+x-C;而如果我们只看中间第二行和左上到右下的对角线,可以知道x+C=A+*,也就是*=x+C-A。所以B+x-C=x+C-A,两边可以都去掉x,就得到A+B=2×C。说明完毕。「评议」这就是幻方的性质3,也被形象的称为“T”字型性质。当然,类似本题中这样A+B=2×C的性质还有另外3种不同方向的表达形式,大家应该自己可以总结出来。“T”字型性质是非常重要,而且神奇的性质,它神奇就神奇在三阶幻方有无穷多个,看起来好像数字怎么填都可以。但是这条性质却告诉我们在离得这么远的三个位置上的数字之间却有着这样简单的关系,三阶幻方中的数字不是随便怎么填都可以的,中间还潜藏着一些更深层次的特殊性质。这正是数学的魅力所在。【习题】1、请完成下面的三阶幻方:「分析」本题需要综合利用上面的3条性质以及比较法来解决,目的主要是求出“幻和”,一旦“幻和”求出来了,一切就都没问题了。但是不同人的解题顺序和利用性质的方式可能很不一样,所以下面我只是提供一种可行的解题顺序和方法,大家应该有自己的解题顺序和方法。这类题是简单的。「详解」(1)根据性质2,A=100×2-19=181,B=100×2-95=105;“幻和”=100×3=300。下面就只要根据幻方的概念填就可以了。答案如下:24171105181100199529176(2)17A29C19B根据比较法,A=19+29-17=31;根据性质3,B=(17+29)÷2=23;根据性质2,C=(19+31)÷2=25,“幻和”=25×3=75。下面也就只要根据幻方的概念填就可以了。答案如下:1001995第4题(1)172919第4题(2)271731292521193323「评议」至此,本讲对于三阶幻方的深入研究告一段落,最后重申几点注意事项:I.这些性质只适用于三阶幻方,对于四阶和四阶以上的幻方,有些性质可能就不成立了,而有些需要修改,请同学们慎重,具体问题具体处理。II.这几条性质适合于所有的三阶幻方,并没有局限性。2、求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方。「详解」:由例4知中间方格中的数为267÷3=89。由于在两条对角线、中间一行及中间一列这四组数中,每组的三个数中都有89,所以每组的其余两数之和必为267-89=178。两个质数之和为178的共有六组:5+173=11+167=29+149=41+137=47+131=71+107。经试验,可得右图所示的三阶质数幻方。3、将1—12填入图中的12个区域内,使得每个圆圈内的4个数字之和都相等。「分析」原则上我们是可以通过分析每个数所属于的圆圈个数(“重数”)来分析每个圆圈内4个数字之和的范围,确定其最小值和最大值,再一一筛选。具体方法大家可以参考三年级下学期的内容。但是这种方法在一些特殊的数阵图题目中显得非常不实用。当然,由于同学们做题时只需要找出一种可能的填法,所以上面说的这种方法在很多情况下也是可行的,只是繁琐些。「详解」如右图,首先,我们把注意力放在下面的和右面的圆圈中,可以得到:A+B+2+5=B+C+7+8,则A-C=8。因此要么A=9,C=1或者A=11,C=3(因为12和10已经有了)。如果A=11,C=3,那么仿照以上的步骤,就可以知道D=E-10(为什么?大家自己思考),所以不可能。因此A=9,C=1,那还剩下4个数字需要填:3,6,11,12。由于10+D+A(9)=E+4+7,于是D+8=E。所以就有D=3而E=11。剩下的数就很简单了。10254781025478ABCDE答案如下:「评议」还是那句话,特殊而巧妙的方法是因题而异的,这需要经验和积累。也就是说,大家不能做完题就算了,而是需要牢牢记住这些好方法,久而久之才能融会贯通。4、将1、2、3、4、5、6、7、8、9分别填入图中的9个圆圈内,使图中每条直线上圆圈内所填数之和都相等,那么这个相等的和为_______;(图中有7条直线,请填出)「分析」我们仔细看看上面这张图,就会发现有些圆圈处于三条直线上,而另一些圆圈处于两条直线上,还有一个圆圈只处于一条直线上。要想利用所谓“重数”的分析方法,有很大的困难。当然也不是说这种方法就失灵了,我们综合分析一下,就不难发现某些位置上的数字应该偏大,而另一些数字显然偏小。如果去猜一猜的话,也不难填出一种来。那么我们就可以去考虑一下是否有更好或更直接的方法来做本题。我们发现有一个圆圈很特殊,从它出发,就很容易找到答案。「详解」除去位置A处的数字,剩下的8个数字恰好组成三行,也就是说1+2+3+4+5+6+7+8+9-A=3ד每条直线上圆圈内所填数之和”。因此,A一定是3的倍数,也就是说A=3,6或9,而相应的“每条直线上圆圈内所填数之和”就等于14,13或12。但是,如果A=9的话,那么右下角的圆圈内只能填1或者2了,此时就要求左下角的数字至少为10,显然不可能。如果A=6,则每条直线上圆圈内所填数之和等于13,而在下图中我们知道B=C+6(比较法),因此就要D+6+B=C+D+12=13,是不可能的。所以A=3,而相应的“每条直线上圆圈内所填数之和”就等于14,且有C+D=8。(为什么?请大家自己思考)然后我们就可以找到一种填数的方法,使得每条直线上圆圈内所填数之和就等于14。答案如下图:「评议」大家可以去思考一下,虽然每条直线上圆圈内所填数之和只可能等于14,但是除了上面给出的填法,是否还有其它的填数方式?如果有,请找出来;如果没有,说明理由。1025478913116123295618476DBCA