多碎石沥青混凝土SAC沙渠林【交通部公路科学研究所北京100088】摘要:本文简要介绍了多碎石沥青SAC—16的产生背景、组成原理和发展概况,着重介绍了它在沪宁高速公路江苏段的应用概况和取得的显著技术效益它的空气率为3.7%~5.0%,表面构造深度平均0.69~0.92mm,达到既密实、表面构造深度又大的目的。关键词:多碎石空气率表面构造深度高级道路上的沥青面层通常分两层或三层,分两层时可分别称表面层和底面层;分三层时可分别称表面层、中面层和底面层。除承载能力外,半刚性路面的行驶质量或使用性能主要取决于沥青面层。要求沥青面层裂缝少,辙槽轻、平整、抗滑性能好和经久耐用。沥青面层能否达到这些使用要求,与所用沥青、沥青混合料的类型和性质、以及沥青面层的厚度(辙槽)有密切关系。本文仅介绍沪宁高速公路表面层所用多碎石沥青混凝土。1表面层的功能要求表面层直接遭受大气因素和行车荷载的作用。沥青路面的表面特性,如摩擦系数和表面构造深度是由表面层提供的。表面层还应该有优秀的温度稳定性,高温时不易变软或具有好的高温稳定性,低温时具有良好的抗裂性能和抗温度疲劳裂缝的能力。表面层还应该具有不透水性,防止自由水由表面透入路面结构层和防止自由水较长时间停滞在表面层内,以保持路面的耐久性。由于上述对表面层的功能要求,需要采用优质沥青和磨光值高、耐磨耗及抗压碎能力强的形状好(接近立方体、扁平颗粒少)的碎石做表面层。除石料要求外,显然中粒式沥青混凝土的构造深度优于细粒式沥青混凝土。在冰冻地区,不宜采用孔隙率较大的半开级配混合料(空气率6%~15%),以避免表面水在孔隙中反复冰融造成的有害作用,在非冰冻地区,也不宜采用孔隙率较大的半开级配混合料,以免自由水较长时间停滞在表面层的孔隙中可能引起的沥青剥落现象和夏季可能加剧辙槽或推挤等损坏现象。就沥青混凝土的热稳性,即抗车辙能力而言,中粒式沥青混凝土优于细粒式沥青混凝土。此外,密实式沥青混凝土的抗裂性和耐久性都优于半开级配沥青混凝土。2多碎石沥青混凝土的背景80年代中我国开始建设高速公路。有的高速公路采用GBJ92—86中的LH—20Ⅰ型密级配沥青混凝土做表面层。Ⅰ型沥青混凝土的空气率小,只有3%~6%,因此其透水性小。透水性小和耐久性好是Ⅰ型沥青混凝土的优点。实践证明,此表面层的摩擦系数能达到要求,但表面构造深度远达不到要求,只有0.3mm左右。因此,表面构造深度达不到要求是Ⅰ型沥青混凝土的明显缺点。Ⅱ型沥青混凝土的碎石含量大,按级配范围的中值达60%,但其中细料和填料的含量少,因此混合料的空气率大,常在6%~10%之间。应该说Ⅰ型沥青混凝土与Ⅱ型沥青混凝土的主要差别就在于空气率,前者空气率小,后者空气率大。Ⅱ型沥青混凝土的空气率大透水性也就大。透水性大和耐久性差是Ⅱ型沥青混凝土的突出缺点。Ⅱ型沥青混凝土的优点是表面构造深度深,能达到规定要求,而且抗形变能力较强。有的高速公路采用GBJ92—86中的LH—20Ⅱ型半开级配沥青混凝土做表面层,以图解决面层表面有较好的构造深度。用LH—20Ⅱ型做表面层,虽然其摩擦系数和表面构造深度能达到要求,但其空气率大会带来一些弊病。Ⅱ型沥青混凝土在压实度100%时的空气率为6%~10%,施工时的压实度只要求96%,因此竣工后和开放交通初期沥青混凝土的实际空气率将是9.8%~13.6%。空气率这样大的表面层透水性过大。如果沥青面层下层或中、下层也是采用空气率较大的Ⅱ型沥青混凝土甚至沥青碎石,雨水将容易透过沥青面层滞留在半刚性基层的表面和滞留在沥青混合料内部。停留在基层表面的自由水容易冲刷基层表层的细料并导致唧浆现象,使面层与基层脱开,面层表面产生网裂和沉陷形变,甚至发展成局部坑洞。存留在面层沥青混凝土中的水在夏季行车作用下容易促使沥青剥落甚至产生松散现象,使面层混凝土稳定性较大降低并形成较严重的辙槽。在冰冻地区的冬季,存留在面层沥青混凝土中的水使沥青混凝土在泡水的情况下反复冻融将严重影响沥青混凝土的强度和缩短其抗疲劳寿命。在Ⅱ型沥青混凝土表面层下设置透水性小的Ⅰ型密级配沥青混凝土,虽然可以基本阻止雨水下渗到基层顶面,但仍然会滞留在表面层沥青混凝土中,并促使表面层产生上述的损坏现象。为减少表面层Ⅱ型沥青混凝土的空气率而增大沥青用量显然也是不合适的,它将降低沥青混凝土的稳定性,容易导致较严重的辙槽。Ⅱ型沥青混凝土的空气率大,空气容易进入,面层中的沥青就容易氧化和老化,它将影响沥青面层的耐久性。因此,如表面层采用空气率较大的Ⅱ型沥青混凝土将影响面层的使用性能和使用寿命(要求其使用寿命能达15年左右),表面层不适宜采用Ⅱ型沥青混凝土。为了解决高速公路沥青表面层的抗滑性能好,特别是构造深度满足要求,又透水性小这一技术问题,1988~1990年75—24—01—01专题在京深高速公路正定试验路、定州实体工程、西安试验路及西临高速公路实体工程都采用了多碎石沥青混凝土做表面层。3多碎石沥青混凝土的组成原理GBJ92—86中中粒式沥青混凝土Ⅰ型和Ⅱ型的矿料级配范围摘录在表1中。GBJ92—86中粒式沥青混凝土的级配范围表1类型通过下列圆筛孔(mm)质量百分率25201052.51.20.60.30.150.075LH-25Ⅰ95~10070~8050~6535~5025~4018~3013~218~154~9Ⅱ95~10050~7030~5020~3513~259~186~134~83~7LH-20Ⅰ95~10070~8050~6535~5025~4018~3013~218~154~9Ⅱ95~10050~7030~5020~3513~259~186~134~83~7由于沥青表面层多数采用4cm厚,有的高速公路为减少表面层用价格明显高的碎石用量,也采用3cm厚,因此常采用LH—20沥青混凝土。从表1可以看到,LH—25和LH—20两种矿料级配10mm以下各个筛孔的通过量都是一样的,仅标称最大粒径一是25mm,另一是20mm。Ⅱ型沥青混凝土5mm以上碎石含量多,其范围为50%~70%,中值60%,因此它具有较好的表面构造深度,Ⅰ型沥青混凝土细料颗粒含量多,因此它具有较小的空气率和透水性小。如果将两者颗粒组成的特点结合在一起形成一种新矿料级配,就有可能使沥青混凝土表面层的构造深度较深,空气率和透水性较小。根据这一设想,笔者组成了新的中粒式沥青混凝土的级配范围,见表2。多碎石沥青混凝土的原级配范围表2圆筛孔尺寸201052.51.20.60.30.150.075通过质量(%)95~10055~7035~4722~3313~2510~208~165~134~9由表2可以看到,此矿料级配中2.5mm以上粗集料的含量为67%~78%,中值为72.5%。由于用此级配组成的沥青混凝土中,粗碎石形成骨架,沥青砂胶填充空隙并将碎石骨架结合在一起,它不同于传统的密级配沥青混凝土,因此取名为多碎石沥青混凝土。上述试验路和实体工程表明,面层表面的构造深度都在0.5mm左右,其构造深度明显大于LH—20Ⅰ型沥青混凝土。多碎石沥青混合料的马歇尔试验表明,其空气率常在5%左右,符合密级配沥青混凝土的要求。用相同的沥青制成LH—20Ⅰ型密级配沥青混凝土(其中5mm以上的碎石含量42.5%)试件和最大粒径相同的多碎石沥青混凝土(其中5mm以上碎石含量59%)试件,分别在50℃温度下进行了单轴压缩蠕变试验,试验结果表示在图1上。图1上的两根曲线表明,多碎石沥青混凝土(SLH—20)的压缩应变明显小于密级配LH—20Ⅰ图1两种沥青混凝土的单轴压缩蠕变试验结果型沥青混凝土。图1室内外的实践证明,多碎石沥青混凝土的使用性能达到了预定目的,它既能提供要求的表面构造深度,又能如Ⅰ型密级配沥青混凝土那样具有较小的空气率和较小的透水性,同时又具有较好的抗形变能力。可以说,多碎石沥青混凝土既具有Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时它又避免了两者各自的缺点。4多碎石沥青混凝土在沪宁高速公路的使用效果七·五期间多碎石沥青混凝土试验成功后,八·五期间在海南东线高速公路一期工程、济青高速公路、青岛—黄岛高速公路以及石太高速公路河北段得到推广应用。根据上述高速公路的使用经验,1996年沪宁高速公路江苏段约248km的表面层厚4cm,全部采用多碎石沥青混凝土SAC—16做表面层。采用的矿料级配范围列在表3中。沪宁高速公路江苏段用多碎石沥青混凝土的矿料级配范围表3混合料类型通过下列方筛孔(mm)的质量百分率191613.29.54.752.361.180.600.300.150.075SAC1610090~10070~9050~7030~5022~3716~2812~238~186~134~84.1室内试验表面层采用不同产地的玄武岩碎石,细集料中加7%天然砂,有部分施工单位全部采用碎细集料。玄武岩碎石(含不同粒级和不同产地)的视密度变化在2.950~2.970g/cm3之间,毛体积密度变化在2.869~2.887g/cm3之间。天然砂的视密度为2.680g/cm3(未做毛体积密度)。矿粉的视密度为2.716g/cm3。碎石吸水率为0.7%~3.0%。沿线8个合同段按表3中SAC—16做的混合料配合比设计基本代表了全线的情况。这8个合同段各有自己的设计级配曲线,现将他们的设计级配曲线各个筛孔通过量的最大值与最小值列在表4中。8个合同段所用SAC—16级配曲线之间的最大差异表4通过下列方筛孔(mm)的质量百分率191613.29.54.752.361.180.60.30.150.07599.7~10091.1~95.177.2~80.759.5~64.337.9~43.626.5~31.919.1~22.212.0~18.19.6~14.37.7~8.95.5~6.5各个标段沥青混合料设计结果所定沥青用量和矿粉与沥青用量之比以及在选定沥青用量时沥青混合料的各个主要技术指标都列入表5中(表中仅列最小值到最大值的范围)。SAC—16混合料设计结果表5沥青含量(油石比)矿粉沥青稳定度(kN)流值(0.1mm)空气率(%)饱和度(%)残留稳定度(%)4.7~4.91.21~1.369.4~11.827~343.6~4.670.4~74.979.6~94.04.2室内检验结果某合同段细集料堆放在仓库内,不受雨淋,因此施工过程中矿料的级配组成控制得较好。表6所列为该合同段在23d期间17d施工过程中取混合料样品进行23次(其中有11次为两次试验的平均值)抽提和筛分试验的结果。表中0.3mm以下3个筛孔的通过量的偏差系数较大是由矿粉受潮引起。表7为取混合料进行马歇尔试验的结果。从表6的筛分结果可以看到,检验的平均结果与生产配合比确定的设计级配曲线很接近,各个筛孔的通过量与设计级配曲线的偏差都在规范允许的误差范围内,同时也都位于SAC—16的级配范围内。沥青用量(油石比)变化在4.70%~4.82%之间,平均4.77%(略低于设计用量4.80%),偏差系数CV=0.71%。这些都说明,该合同段的质量控制较好。SAC—16抽提和筛分试验结果(23次)表6方筛孔尺寸(mm)标准级配范围设计级配曲线范围(%)平均值(%)标准差(%)偏差系数(%)19100100100~100100001690~10093.086.0~96.894.32.422.613.270~9080.174.5~87.282.62.873.59.550~7060.458.7~67.262.92.453.94.7530~5042.639.7~46.84312.044.72.3622~3731.627.7~35.132.21.685.21.1816~2822.618.3~26.223.71.797.60.612~2317.914.8~21.519.51.598.20.38~1611.59.7~15.113.51.4010.40.156~138.06.1~9.48.30.8810.60.0754~85.74.2~6.65.70.6110.7沥青(%)4.84.70~4.824.770.0340.