大数据与未来教育陈兆峰20122802011摘要:在当今的信息时代,云技术、物联网和基于二者的大数据技术正推动教育发生着变革。未来教育在互联网等技术的作用下变的越来越个性化,通过对大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自组织学习,学校和教师更多的关注学生的个性化培养,教师由教学者逐渐转变为助学者。在逐步到来大数据时代,互联网教育与学校教育将逐渐分离,更多的交往互动、个性化服务和灵活的学制将使学校获得新的生机。“在数字化课堂教学过程中,可以对学习过程进行数据形式化采集和描述,并基于课堂单元和学期单元进行学习过程的大数据挖掘和分析。教师通过这些数据和分析结果,可以即时进行教学控制和教学反思,从而提高课堂教学水平。学生和家长通过这些数据和分析结果,也可以尽快发现自己学习中的不足,进而也可以提高自己的学习水平。”——北京师范大学教育技术系副教授,教育部教育信息化专家“在国内尤其是北京、上海、广东等城市,大数据在教育领域有了越来越多的应用,像慕课、在线课程、翻转课堂等,已经有越来越多的学生加入到网上学习的行列中来。”——北京师范大学教育技术学院教授、现代教育技术研究所所长何克抗(一)什么是大数据大数据是指无法在可容忍内用传统IT技术和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。它需要新处理模式才能让其具有更强的决策力、洞察发现力和流程优化能力,是一种海量、高增长率和多样化的信息资产。物联网、云计算、移动互联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,都是数据来源。体量浩大Volume非结构化数据的超大规模和增长总数据量的80~90%比结构化数据增长快10倍到50倍是传统数据仓库的10倍到50倍多样性Variety大数据的异构和多样性很多不同形式(文本、图像、视频、机器数据)无模式或者模式不明显不连贯的语法或句义价值大密度低Value大量的不相关信息对未来趋势与模式的可预测分析深度复杂分析生成速度Velocity实时分析而非批量式分析数据输入、处理与丢弃立竿见影而非事后见效(二)为什么未来教育需要大数据1.宏观层面华为全球联接指数今天,有70亿人生活在地球。到2025年,世界上将有1000亿的联接。这些联接,促进了各行各业的发展。在联接水平最高的德国,ICT有效地支撑了“德国工业4.0”,使工业生产效率提升了30%。在各行各业中,金融是联接技术最积极的拥抱者,大数据的分析让金融放贷的周期从1个星期到5分钟。联接的主要内容是数据之间的共享,而教育行业是ICT的变革者。所以大数据对未来教育行业的影响可见一斑。2.微观层面传统的教育兴盛于工业化时代,学校的模式映射了工业化集中物流的经济批量模式:铃声、班级、标准化的课堂、统一的教材、按照时间编排的流水线场景,这种教育为工业时代标准化地制造了可用的人才。而大数据教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功。世界也许会因此安静许多,而数据将火热地穿梭在其中,人与人(师生、生生)的关系,将通过人与技术的关系来实现。大数据与传统的数据相比,就有非结构化、分布式、数据量巨大、数据分析由专家层变化为用户层、大量采用可视化展现方法等特点,这些特点正好适应了个性化和人性化的学习变化。目前教育变革的讨论,过于集中在在线教育(远程、平板、电子、数字),这正像任何一个科技让人们最先想到的都是偷懒的哲学,自动化时代最先想到的是卓别林演的自动吃饭机,多媒体时代人们最先想到的是游戏。在线教育本身很难改变学习,在这场教育革命的浪潮中,由在线教育引发的教育由数字支撑到数据支撑变化(教育环境,实验场景,时空变化,学习变化,教育管理变化等等),确是很多人没有在意的巨大金矿。教育环境的设计、教育实验场景的布置,教育时空的变化、学习场景的变革、教育管理数据的采集和决策,这些过去靠拍脑袋或者理念灵感加经验的东西,在云、物联网、大数据的背景下,变成一种数据支撑的行为科学。教育将继经济学之后,不再是一个靠理念和经验传承的社会科学和道德良心的学科,大数据时代的教育,将变成一门实实在在的实证科学。(三)教育的发展历程——从封闭走向开放,从传统数据走向大数据从教育的发展历程来看,数据对教育的影响越来越深。从课堂教学只有老师书本黑板,到翻转课堂的电子课件,再到开放课程的网络资源,数据量一直在不断地增加,而教育对数据的依赖也越来越大。大数据所带来的,并非源于我们电脑的硬盘变大了,CPU处理速度更快了——所以我们可以处理更大规模的数据了。大数据与传统数据的区别在于人们对于“数据”的理解更为深入了,许多我们曾经并没有重视的,或者缺乏技术与方法去收集的信息,现在都可以作为“数据”进行记录与分析了。举例来说,一个学生读完9年制义务教育产生的可供分析的量化数据基本不会超过10KB,包括个人与家庭基本信息,学校与教师相关信息,各门各科的考试成绩,身高体重等生理数据,读书馆与体育馆的使用记录,医疗信息与保险信息等。这样的数据量,一台较高配置的普通家庭电脑,初级的EXCEL或SPSS软件就能进行5000名以下学生量的统计分析工作。操作者也只需要中级水平的教育与心理统计知识,一套可供按部就班进行对照处理的数据分析模板,经过两三个月的操作培训就能基本胜任。而大数据的分析则完全是另一种层面的技术。根据荷兰著名的行为观察软件商NOLDUS公司的研究,在一节40分钟的普通中学课堂中一个学生所产生的全息数据约有5-6GB,而其中可归类、标签、并进行分析的量化数据约有50-60MB,这相当于他在传统数据领域中积累5万年的数据量总和。而要处理这些数据,需要运用云计算技术,并且需要采用Matlab、Mathematica、Maple等软件进行处理并进行数据可观化。而能够处理这些数据的专业人才一般来自数学或计算机工程领域,需要极强的专业知识与培训,而更为难能可贵的是,大数据挖掘并没有一些的方法,更多需要依靠挖掘者的天赋与灵感。大数据与传统数据最本质的区别体现在采集来源以及应用方向上。传统数据的整理方式更能够凸显的群体水平——学生整体的学业水平,身体发育与体质状况,社会性情绪及适应性的发展,对学校的满意度等等。这些数据不可能,也没有必要进行实时地采集,而是在周期性、阶段性的评估中获得。这些数据,完全是在学生知情的情况下获得的,带有很强的刻意性和压迫性——主要会通过考试或量表调查等形式进行——因此也会给学生带来很大的压力。而大数据有能力去关注每一个个体学生的微观表现——他在什么时候翻开书,在听到什么话的时候微笑点头,在一道题上逗留了多久,在不同学科课堂上开小差的次数分别为多少,会向多少同班同学发起主动交流,等等。这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的过程,师生或生生的互动过程之中……在每时每刻发生的动作与现象中产生。这些数据的整合能够解答教课程是否吸引学生?怎样的师生互动方式受到欢迎?……而最最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。所以,综合以上的观点,我们不难发现,在教育领域中,传统数据与大数据呈现出发下区别:传统数据诠释宏观、整体的教育状况,用于影响教育政策决策;大数据可以分析微观、个体的学生与课堂状况,用于调整教育行为与实现个体化教育。传统数据挖掘方式,采集方法、内容分类,采信标准等都已存在既有规则,方法论完整:大数据挖掘与新鲜事物,还还没有形成清新的方法、路径以及评判标准。传统数据来源于阶段性的、针对性的评估,其采样过程可能有系统误差;大数据来源于过程性的、即时性的行为与现象记录,第三方、技术型的观察采样的方式误差较小。传统教育分析所需要的人才、专业技能以及设施设备都较为普通,易获得:大数据挖掘需要的人才,专业技能以及设施设备要求较高,并且从业者需要有创新意识与挖掘数据的发感而不是按部就班,这样的人才十分稀缺。(四)大数据应用的三种主流模式因此从现阶段来看,在原本的传统教育模式下,老师往往难以照顾学生最个性化的需求,而随着大数据的应用将有所改变,学生们可以得到经过数据分析之后的,个性化的教学和无穷无尽的资源配套。那么究竟什么样的大数据能够真正的帮助学生解决问题?现阶段究竟需要哪些数据?又该如何有效收集、挖掘这些数据呢?从在线教育目前的发展,可以窥见如下几种应用模式:模式一:线上线下O2O平台。云平台搭建与大数据应用为底层架构,引导学生在线上完成学习过程,并针对每一个具体的环节完整记录,积累大量的多维度的数据素材后(学习时长、学习内容、学习频率、学习习惯等),分析结果为老师提供线下个性化学习方案的重要依据。如学大于今年3月推出的e学大平台,其就有效帮助大数据在教育过程中形成了完整闭环。简单来说,经过大数据分析后形成的,学习资源和课程内容能够适应每个学生的差异,同时学生可以按照自己的节奏来控制学习进度。完成学习后,平台会给教师分析反馈,老师将会针对性的为学生提供解惑,提供下一步的有效指导。可以看到,O2O模式对于大数据的应用,能够为学生的发展进行智能的多元化全面评估,包括完整的学习过程(基于不同学习场所及情景)等,离每个学生的距离更近。模式二:在线教育工具类App。基于较为单一的学习环节(如作业、题库、背单词、问题解答等),收集学生一部分的学习数据,经过分析后,提供准确的解答结果,解决学生的具体学习需求。此类模式,可以部分帮助学生完成个性化学习,但鉴于纯在线环境等因素,较难完成持续性的学习进阶。如刚与外研社达成合作的猿题库,基于题库数据,为学生提供智能分析平台;还有刚推出不久的答题App“菁优数学”,其主要功能是为中小学数学试题在线搜索、解析,希望利用大数据呈现出精准试题结果,实现个性化的推荐。模式三:教学评估软件及学校分析平台(校内)。收集包括学习表现,行为表现,性格发展等学生大数据,能让学校的教师和领导更好地掌握、分析以及分享学生表现,以此来改善教学、管理课堂。此类模式的设计更多的是以教师为中心,帮助老师了解学生,调整教学方案,最终使得学校的教学更加系统化。如成立于2009年的Kickboard网络数据平台,以图表的形式帮助教师可以在一个控制平台上收集、分析和分享学生信息,减少了在各种文档和数据库之间的转换,还可以向家长提供进展报告。目前,美国已经有超过200多所学校使用。(五)实现大数据,教育可以怎么做在微观实践层面,一些探索已经起步。第一,对学生的发展进行多元评估,发现学业成绩背后的原因。金山区在小学生学习素养的研究中就发现了许多这样的情况。两个学生的数学成绩都是A,从表面上看他们的学习能力似乎是一样的,但是通过多元能力的评估我们就会发现,第一个学生更多是依靠比较出色的逻辑思维能力进行学习的,而第二个学生的逻辑思维能力并不理想,是凭借比较出色的记忆力获得好成绩。但是依靠记忆力进行学习的方式在低年级时也许比较有效,但对于长期发展,对于培养高级思维能力肯定是无效的。暂时的好成绩完全有可能掩盖他在全面发展过程中的不足与风险。而这一情况的发现有助于教师尽早提供有针对性的策略,帮助学生弥补能力上的不足。因此说,大数据能够让我们更全面地看待学生的发展,发现成绩所反映不了的发展问题。第二,大数据实现过程性评估,发现学生的常态,改造课堂的流程。我们经常说,教学评估应该是过程性的,而非只有终结性的。如果我们想象,教师拥有一个课堂观察的终端,可以随手记录学生的发言质量,作业完成情况,课堂纪律等。那么教师在期末时将这些数据汇总起来,就使得撰写评语时不用绞尽脑汁,而有了更加丰富的素材与数据依据,能对学生的发展提出建议。同时,这些数据也可以促使教师反思,自己在哪些地方上需要进行改进。在长宁区的幼儿园主题运动项目中,也正在探索引入这样的观察技术。如果我们更进一步,不是通过教师的观察,而是直接应用信息化的课程载体对学生的行为进行记录,就能够真正实现大数据与课堂进程的结合。静安区社会性情绪项目正在探索依靠终端去记