山东省各市2013年中考数学试题分类汇编(解析版)一次函数与反比例函数一、填空、选择题1、(2013滨州市)若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y2考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象的增减性进行判断.解答:解:∵反比例函数的解析式中的k<0,∴该函数的图象是双曲线,且图象经过第二、四象限,在每个象限内,y随x的增大而增大.∴点A(1,y1)、B(2,y2)都位于第四象限.又∵1<2,∴y1>y2故选C.点评:本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.2、(2013德州市)函数y=1x与y=x﹣2图象交点的横坐标分别为a,b,则11ab的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=1x与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴11ab===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.3、(2013东营市)如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;……按此作法继续下去,则点A2013的坐标为.答案:.201340260,40,2或(注:以上两答案任选一个都对)解析:因为直线33yx与x轴的正方向的夹角为30°,所以60AOB,在RtAOB中,因为OA=1,所以OB=2,1RtAOB中,所以1OA=4,即点1A的坐标为(0,4),同理1OB=8,所在21RtAOB中,2OA=16,即点2A的坐标为2(0,4)依次类推,点2013A的坐标为2013(0,4)或4026(0,2).4、(2013菏泽市)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限考点:一次函数图象与系数的关系.分析:首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限即可.解答:解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选D.点评:本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.(第17题图)OAA1A2B1Bxl(第15题图)6030ACBD(第16题图)AB5、(2013莱芜市))M(1,a)是一次函数y=3x+2与反比例函数图象的公共点,若将一次函数y=3x+2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为(﹣1,﹣5),().考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.专题:计算题.分析:将M坐标代入一次函数解析式中求出a的值,确定出M坐标,将M坐标代入反比例解析式中求出k的值,确定出反比例解析式,根据平移规律求出平移后的一次函数解析式,与反比例函数联立即可求出交点坐标.解答:解:将M(1,a)代入一次函数解析式得:a=3+2=5,即M(1,5),将M(1,5)代入反比例解析式得:k=5,即y=,∵一次函数解析式为y=3x+2﹣4=3x﹣2,∴联立得:,解得:或,则它与反比例函数图象的交点坐标为(﹣1,﹣5)或(,3).故答案为:(﹣1,﹣5)或(,3)点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,平移规律,熟练掌握待定系数法是解本题的关键.6、(2013临沂市)如图,等边三角形OAB的一边OA在x轴上,双曲线xy3在第一象限内的图像经过OB边的中点C,则点B的坐标是(A)(1,3).(B)(3,1).(C)(2,32).(D)(32,2).答案:C解析:设B点的横坐标为a,等边三角形OAB中,可求出B点的纵坐标为3a,所以,C点坐标为(3,22aa),代入xy3得:a=2,故B点坐标为(2,32)7、(2013日照市)如右图,直线AB交双曲线xky于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S⊿OAC=12,则k的值为___________.答案:8解析:过A作AN⊥OC于N,因为BM⊥x轴,所以,AN∥BM,因为B为AC中点,所以MN=MC,又OM=2MC=2MN,所以,N为OM中点,设A(a,b),则OC=3a,13122ab,得ab=8,又点A在双曲线上,所以,k=ab=8。8、(2013泰安市)把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<4考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.9、(2013潍坊市)设点11,yxA和22,yxB是反比例函数xky图象上的两个点,当1x<2x<0时,1y<2y,则一次函数kxy2的图象不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限答案:A.考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y随x增大而增大,可知k<0,而一次函数在k<0,b<0时,经过二三四象限,从而可得答案.10、(2013青岛市)如图,一个正比例函数图像与一次函数1xy的图像相交于点P,则这个正比例函数的表达式是____________答案:y=-2x解析:交点P的纵坐标为y=2,代入一次函数解析式:2=-x+1,所以,x=-1即P(-1,2),代入正比例函数,y=kx,得k-2,所以,y=-2x二、解答题1、(2013滨州市)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=﹣垂直的直线l5的函数表达式.考点:一次函数综合题.分析:(1)根据题意可直接得出l2的函数表达式;第12题(2)①先设直线l3的函数表达式为y=k1x(k1≠0),根据过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,求出k1=tan30°,从而求出直线l3的函数表达式;②根据l3与l4的夹角是为90°,求出l4与x轴的夹角是为60°,再设l4的解析式为y=k2x(k2≠0),根据直线l4过二、四象限,求出k2=﹣tan60°,从而求出直线l4的函数表达式;(3)通过观察(1)(2)中的两个函数表达式可得出它们的函数表达式中自变量的系数互为负倒数关系,再根据这一关系即可求出与直线y=﹣垂直的直线l5的函数表达式.解答:解:(1)根据题意得:y=﹣x;(2)①设直线l3的函数表达式为y=k1x(k1≠0),∵过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,∴k1=tan30°=,∴直线l3的函数表达式为y=x;②∵l3与l4的夹角是为90°,∴l4与x轴的夹角是为60°,设l4的解析式为y=k2x(k2≠0),∵直线l4过二、四象限,∴k2=﹣tan60°=﹣,∴直线l4的函数表达式为y=﹣x;(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=﹣垂直的直线l5的函数表达式为y=5x.点评:此题考查了一次函数的综合,用到的知识点是锐角三角函数、一次函数的解析式的求法,关键是根据锐角三角函数求出k的值,做综合性的题要与几何图形相结合,更直观一些.2、(2013东营市)如图,在平面直角坐标系中,一次函数2(0)ynxn=+?的图象与反比例函数(0)mymx=?在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=45.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.分析:(1)过点A作ADx轴,在RtAOD中,由4sin5AOC,OA=5,可得AD=4,由勾股定理得OD=3,故可得点A的坐标为(3,4),把(3,4)分别代入2ynx,与myx中可求得m,n的值.(2)根据直线2ynx与x轴的交点可求点B的坐标,故OB可得,所以12AOBSOBAD.解:(1)过A点作AD⊥x轴于点D,∵sin∠AOC=ADAO=45,OA=5∴AD=4.由勾股定理得:DO=3,∵点A在第一象限∴点A的坐标为(3,4)………………2分将A的坐标为(3,4)代入y=mx,得43m=,∴m=12∴该反比例函数的解析式为12yx=………………4分将A的坐标为(3,4)代入2ynx=+得:23n=∴一次函数的解析式是223yx=+…………………………6分(2)在223yx=+中,令y=0,即23x+2=0,∴x=3-∴点B的坐标是(3,0)-∴OB=3,又DA=4∴1134622AOBSOBADD=?创=,所以△AOB的面积为6.………9分点拨:用待定系数法求函数解析式时,正确求出函数图象上点的坐标是解题的关键.x(第21题图)BAOyCD3、(2013菏泽市)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数的图象交于A、B两点.①根据图象求k的值;②点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试写出点P所有可能的坐标.考点:反比例函数与一次函数的交点问题;分式的化简求值.分析:①求出A的坐标,代入反比例函数的解析式求出即可;②以A或B为直角顶点求出P的坐标是(0,2)和(0,﹣2),以P为直角顶点求出P的坐标是(0,),(0,﹣).解答:①把x=﹣1代入y=﹣x得:y=1,即A的坐标是(﹣1,1),∵反比例函数y=经过A点,∴k=﹣1×1=﹣1;②点P的所有可能的坐标是(0,),(0,﹣),(0,2),(0,﹣2).点评:本题考查了一次函数与反比例函数的交点问题和直角三角形的判定的应用,主要考查学生的计算能力,用了分类讨论思想.4、(2013聊城市)如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.(1)求点C的坐标;(2)求一次函数的解析式.考点:反比例函数与一次函数的交点问题.专题:探究型.az55751535(第24题图)分析:(1)先根据点A的坐标为(2,0),B是AC的中点,B在y轴上,得出点C的横坐标为﹣2,再将x=﹣2代入y=,求出y=4,即可得到点C的坐标;(2)设一次函数的解析式y=kx+b,将点A.点C的坐标代入,运用待定系数法即可求出一次函数的解析式.解答