2012年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分)1.-12的绝对值是(A)A.12B.-12C.112D.112【考点】绝对值.【专题】【分析】根据绝对值的定义进行计算.【解答】解:|-12|=12,故选A.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(B)A.115°B.65°C.35°D.25°【考点】平行线的性质.【专题】【分析】由直线a∥b,∠1=65°,根据两直线平行,同位角相等,即可求得∠3的度数,又由对顶角相等,即可求得答案.【解答】解:∵直线a∥b,∠1=65°,∴∠3=∠1=65°,∴∠2=∠3=65°.故选B.【点评】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.3.2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为(C)A.1.28×103B.12.8×103C.1.28×104D.0.128×105【考点】科学记数法—表示较大的数.【专题】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12800有5位,所以可以确定n=5-1=4.【解答】解:12800=1.28×104.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.下列事件中必然事件的是(B)A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100℃时水会沸腾C.三角形的内角和是360°D.打开电视机,正在播动画片【考点】随机事件.【专题】【分析】根据必然事件的定义就是一定发生的事件,即可作出判断.【解答】解:A、是随机事件,可能发生也可能不发生,故选项错误;B、必然事件,故选项正确;C、是不可能发生的事件,故选项错误;D、是随机事件,可能发生也可能不发生,故选项错误.故选B.【点评】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列各式计算正确的是(D)A.3x-2x=1B.a2+a2=a4C.a5÷a5=aD.a3•a2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】【分析】根据合并同类项法则,同底数幂乘除法法则,逐一检验.【解答】解:A、3x-2x=x,本选项错误;B、a2+a2=2a2,本选项错误;C、a5÷a5=a5-5=a0=1,本选项错误;D、a3•a2=a3+2=a5,本选项正确;故选D.【点评】本题考查了同底数幂的乘除法,合并同类项法则.关键是熟练掌握每一个法则.6.下面四个立体图形中,主视图是三角形的是(C)A.B.C.D.【考点】简单几何体的三视图.【专题】【分析】找到立体图形从正面看所得到的图形为三角形即可.【解答】解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.化简5(2x-3)+4(3-2x)结果为(A)A.2x-3B.2x+9C.8x-3D.18x-3【考点】考整式的加减.【专题】【分析】首先利用分配律相乘,然后去掉括号,进行合并同类项即可求解【解答】解:原式=10x-15+12-8x=2x-3.故选A.【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为(B)A.12B.13C.16D.19【考点】列表法与树状图法.【专题】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小亮选到同一社区参加实践活动的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小明和小亮选到同一社区参加实践活动的有3种情况,∴小明和小亮选到同一社区参加实践活动的概率为:3193.故选B.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为(A)A.13B.12C.22D.3【考点】锐角三角函数的定义.【专题】网格型.【分析】结合图形,根据锐角三角函数的定义即可求解.【解答】解:由图形知:tan∠ACB=2163,故选A.【点评】本题考查了锐角三角函数的定义,属于基础题,关键是掌握锐角三角函数的定义.10.下列命题是真命题的是(D)A.对角线相等的四边形是矩形B.一组邻边相等的四边形是菱形C.四个角是直角的四边形是正方形D.对角线相等的梯形是等腰梯形【考点】命题与定理.【专题】【分析】根据矩形、菱形的判定方法以及定义即可作出判断【解答】解:A、对角线相等的平形四边形是矩形,故选项错误;B、一组邻边相等的平行四边形是菱形,故选项错误;C、四个角是直角的四边形是矩形,故选项错误;D、正确.故选D.【点评】本题考查了真命题的判断,正确掌握定义、定理是关键.11.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为(C)A.x=2B.y=2C.x=-1D.y=-1【考点】一次函数与一元一次方程.【专题】数形结合.【分析】直接根据函数图象与x轴的交点进行解答即可.【解答】解:∵一次函数y=kx+b的图象与x轴的交点为(-1,0),∴当kx+b=0时,x=-1.故选C.【点评】本题考查的是一次函数与一元一次方程,能根据数形结合求出x的值是解答此题的关键.12.已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是(B)A.外离B.外切C.相交D.内切【考点】圆与圆的位置关系.【专题】【分析】先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.【解答】:解:∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O1O2=5,∴两圆外切.故选B.【点评】此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).13.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为(A)A.21B.5C.14555D.52【考点】直角三角形斜边上的中线;三角形三边关系;勾股定理;矩形的性质.【专题】代数综合题.【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.【解答】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1,DE=2222112ADAE,∴OD的最大值为:21.故选A.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.14.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是(D)A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)[来【考点点的坐标.【专题】规律型【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;此时相遇点的坐标为:(-1,-1),故选:D.【点评】此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.15.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是(D)A.y的最大值小于0B.当x=0时,y的值大于1C.当x=-1时,y的值大于1D.当x=-3时,y的值小于0【考点】二次函数的图象;二次函数的性质.【专题】【分析】根据图象的对称轴的位置、增减性及开口方向直接回答.【解答】解:A、由图象知,点(1,1)在图象的对称轴的左边,所以y的最大值大于1,不小于0;故本选项错误;B、由图象知,当x=0时,y的值就是函数图象与y轴的交点,而图象与y轴的交点在(1,1)点的左边,故y<1;故本选项错误;C、对称轴在(1,1)的右边,在对称轴的左边y随x的增大而增大,∵-1<1,∴x=-1时,y的值小于x=-1时,y的值1,即当x=-1时,y的值小于1;故本选项错误;D、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y的值小于0;故本选项正确.故选D.【点评】本题主要考查了二次函数图象上点的坐标特征.解答此题时,需熟悉二次函数图象的开口方向、对称轴、与x轴的交点等知识.二、填空题(共6小题,每小题3分,满分18分)16.分解因式:a2-1=(a+1)(a-1).【考点】因式分解-运用公式法.【专题】【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).【解答】解:a2-1=(a+1)(a-1).【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.17.计算:2sin30°-16=-3.【考点】实数的运算;特殊角的三角函数值.【专题】【分析】由特殊角的三角函数值与二次根式的化简的知识,即可将原式化简,继而求得答案.【解答】解:2sin30°16=2×12-4=1-4=-3.故答案为:-3.【点评】此题考查了实数的混合运算.此题难度不大,注意掌握特殊角的三角函数值与二次根式的化简,注意运算要细心.18.不等式组2x-4<0x+1≥0的解集为-1≤x<2.【考点】解一元一次不等式组.【专题】【分析】分别求出各