山东省邹平县实验中学九年级数学上册《22.2.2公式法》学案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1《22.2.2公式法》课题课时本学期第课时日期课型复备人审核人学习目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.重点难点求根公式的推导和公式法的应用.一元二次方程求根公式法的推导师生活动时间一、复习引入1.用配方法解下列方程2x²-12x+10=02.、总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=242bbaca,x2=242bbaca分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+bax=-ca配方,得:x2+bax+(2ba)2=-ca+(2ba)2即(x+2ba)2=2244baca∵b2-4ac≥0且4a20∴2244baca≥0直接开平方,得:x+2ba=±242baca即x=242bbaca∴x1=242bbaca,x2=242bbaca由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,师提问学生学生回答根据学生情况,补充强调学生探究教师巡视指导学生动手尝5分钟10分钟15分钟2因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=242bbaca就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.例1.用公式法解下列方程.(1)5x2-4x-12=0(2)2x2+5x-3=0(3)x2+4x=2分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.三、巩固练习1、x2+2x=52、6t2-5=13t教材P37练习1.(1)、(3)、(5)四、应用拓展1、关于x的一元二次方程ax2+bx+c=0(a≠0)。当a,b,c满足什么条件时,方程的两根为互为相反数?2、m取什么值时,方程x2+(2m+1)x+m2-4=0有两个相等的实数解五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.六、检测P42,T5试,教师巡回指导。练习巩固3分10分板书设计教后记

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功