奈奎斯特采样率与压缩感知学习报告

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数字信号处理第一次大作业奈奎斯特采样定理与信号稀疏采样学习报告专业:信息对抗技术学生姓名:石星宇02123010指导教师:吕雁目录奈奎斯特采样定理与信号稀疏采样学习报告....................................................1一、奈奎斯特采样定理..............................................................................11、奈奎斯特采样定理说明................................................................12、信号的采样与恢复........................................................................13、相关代码........................................................................................34、关于奈奎斯特采样定理的一些问题............................................5二、信号稀疏采样......................................................................................51、为什么要提出信号的稀疏采样....................................................52、压缩感知概述................................................................................63、压缩感知基本概念........................................................................64、压缩感知仿真................................................................................75、压缩感知仿真程序........................................................................8三、总结......................................................................................................9四、参考资料..............................................................................................10第1页奈奎斯特采样定理与信号稀疏采样学习报告一、奈奎斯特采样定理1、奈奎斯特采样定理说明采样过程所应遵循的规律,称为取样(采样)定理、抽样定理。采样定理说明采样频率与信号频率之间的关系,是连续信号离散化的基本依据。在进行模拟/数字信号的转换过程中,当采样频率sf大于等于信号中最高频率cf的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,可由采样得到的数字信号恢复原来的模拟信号。一般实际应用中保证采样频率为信号最高频率的5~10倍。采样定理又称奈奎斯特采样定理。将csff2称为奈奎斯特频率。2、信号的采样与恢复结合实例,说明奈奎斯特采样定理与内插恢复的应用。假设有模拟信号tftftxa212cos2cos,其中HzfHzf50,2021。该信号波形及频谱如下图所示:第2页对信号tftftxa212cos2cos以采样频率为Hzffs10022进行采样,得到如下所示的离散时间信号,即序列ssnTfnTfnTx212cos2cos,其中ssfT/1。该序列的频谱如下:第3页由此可见,采样过程对原始信号的频谱有一定的影响。但是随着采样频率的逐渐增加,会使得采样信号的频谱与原始信号的频谱逐渐接近。现在利用内插公式对采样得到的离散时间信号进行恢复。定义内插函数为TtTttsin则TnTtTnTtnTxnTtnTxtnTxtxnna//sin根据上式,便可由采样得到的序列nTx完整的恢复出原始信号txa。下面给出利用MATLAB计算的结果:从上图可以看出,利用内插公式,完整地将原始信号恢复了出来。3、相关代码closeallclearall第4页clcdf=0.5;%频率分辨率tp=1/df;%保证df所需的信号持续时间t=linspace(0,tp,1024);%连续时间变量f1=20;f2=50;%信号频率fc=max(f1,f2);%信号最高频率fs=2*fc;%采样率ts=1/fs;%采样间隔N=2^ceil(log2(fs/df));n=1:N;xa=cos(2*pi*f1*t)+cos(2*pi*f2*t);%模拟信号xn=cos(2*pi*f1*n*ts)+cos(2*pi*f2*n*ts);%模拟信号plot(t,xa,'r')holdonstem(n*ts,xn,'b')legend('模拟信号','采样信号')title('模拟信号和采样信号')xlabel('t'),ylabel('x(t)')axis([0tp/2min(xa)-0.2max(xa)+0.2])figure(2)subplot(211)fftxa=fft(xa);fa=0.5*(-length(t)/2:length(t)/2-1*fs/length(t));plot(fa,fftshift(abs(fftxa)),'r')%模拟信号频谱title('模拟信号频谱')xlabel('f/Hz')subplot(212)fftxn=fft(xn);fn=0.5*(-length(n)/2:length(n)/2-1*fs/length(n));plot(fn,fftshift(abs(fftxn)))%采样信号频谱title('采样信号频谱')xlabel('f/Hz')xaa=zeros(1,length(t));fortt=1:length(t)%计算采样内插值xaa(tt)=0;forn=1:Nxaa(tt)=xn(n)*(sin(pi*(t(tt)-n*ts)/ts)/(pi*(t(tt)-n*ts)/ts))+xaa(tt);endendfigure(3)plot(t,xaa,'b')title('采样内插恢复信号')xlabel('t/s'),ylabel('x(t)')第5页axis([0tp/2min(xaa)-0.2max(xaa)+0.2])4、关于奈奎斯特采样定理的一些问题假设模拟信号为Hzftftxa202cos11,,用奈奎斯特频率对其采样,发现采样点处的取值均为零(如下图),因此用这些采样点是无法恢复原始信号的。这也就是为什么实际中采用的采样频率要大于奈奎斯特频率的原因。此外,实际中我们处理的信号不可能是简单的正弦信号,因此遇到采样点均为零的情况几乎不可能,上述只是一个特例。二、信号稀疏采样1、为什么要提出信号的稀疏采样首先考虑奈奎斯特采样定理的几点缺陷:(1)采样率不得低于信号最高频率的两倍,这使得硬件系统面临很大的采样速率压力;(2)在压缩编码过程中,为了降低存储、处理和传输的成本,大量变换计算得到的小系数被丢弃,造成了数据计算和内存资源的浪费。综合上述两点,人们便提出这样的问题:能否利用其它变换域描述信号,建立新的信号描述和处理理论框架,使得在保证信息不损失的情况下,用远低于奈奎斯特频率的频率去采样信号,同时可以完全恢复信号?第6页答案是肯定的,这就是由E.J.Candes、J.Romberg、T.Tao和D.L.Donoho等科学家在2004年提出的压缩感知理论(Compressedsensing)。2、压缩感知概述压缩感知(Compressedsensing),也被称为压缩采样(Compressivesampling),稀疏采样(Sparsesampling)。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论的核心思想主要包括两点。第一是信号的稀疏结构。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。用数学模型对压缩感知的主要内容进行如下描述:(1)信号稀疏表示问题(稀疏变换):对于信号NRs,如何找到某个正交基,使其在上的表示是稀疏的(2)信号低速采样问题(非相关测量):如何设计一个平稳的、与变换基不相关的NM维的观测矩阵,保证稀疏向量从N维降到M维时重要信息不遭到破坏(3)信号重构问题(重构算法):如何设计快速重构算法从线性观测y中恢复信号。3、压缩感知基本概念设信号Rs是一维实值离散信号,在正交基(稀疏基)上可以稀疏表示,即Nssss21其中NiiN,,2,1,|||21是1N的向量,稀疏系数ssTiii,。当信号在稀疏基上只有K个非零系数时,属于严格稀疏的情况。多数情况下信号无法满足严格稀疏的要求,但仍具有可压缩性,即信号的变换系数经排序后以指数级衰减并趋近于零时,信号是可以近似稀疏表示的。第7页测量矩阵有观测波形和采样方式决定。观测波形一般包括独立同分布的高斯随机波形、伯努利随机波形和正交函数系等;采样方式包括均匀采样、随机采样和jitter采样。将信号s投影到一组测量矩阵TM21上,则测量值,,Tmmsy即:1111||||||||NNMNNNNMNNMMsy也即y重构算法是压缩感知的另一个关键因素。目前的重构算法有贪婪算法(又称匹配追踪(MatchingPursuit,MP),正交匹配追踪(OrthogonalMatchingPursuit,OMP)、凸优化算法(最小1l范数)和统计优化算法(SparseBayesian)等。4、压缩感知仿真与奈奎斯特采样定理仿真相同,仍然设模拟信号tftftxa212cos2cos,对其进行压缩感知采样并重建,并与原始信号对比如下:第8页程序同时给出重构误差0.1032。需要注意的是,每次运行程序所得的重构误差是不同的,是因为信号的重构过程中有随机因素在里面。5、压缩感知仿真程序%1-D信号压缩传感的实现(正交匹配追踪法OrthogonalMatchingPursuit)%测量数M=K*log(N/K),K是稀疏度,N信号长度,可以近乎完全重构%编程人--香港大学电子工程系沙威Email:wsha@eee.hku.hk%编程时间:2008年11月18日%文档下载:~wsha/Freecode/freecode.htm%参考文献:JoelA.TroppandAnnaC.Gilbert%SignalRecoveryFromRandomMeasurementsViaOrthogonalMatching%Pursuit,IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.53,NO.12,%DECEMBER2007.clc;clear%%1.时域测试信号生成K=7;%稀疏度(做FFT可以看出来)N=256;%信号长度M=64;%测量数(M=K*log(N/K),至少40,但有出错的概率

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功