好氧生物污泥工艺的控制与调节为了使废水生物处理系统能长期稳定地达标排放,必须对系统中的“泥、水、气”进行调节,即通过排泥和回流维持系统中合适的微生物量,改善污泥的沉降性能,通过人工曝气控制曝气池中合适的溶解氧,使废水均衡地进入系统并具有合适的营养比例。(1)曝气池的供氧—气的调节废水好氧生物处理就是在好氧条件下,将污水中的有机物氧化、分解,转化成无机物,从而达到稳定化,并提高净化作用的速率。溶解氧水平的高低会直接影响到好氧微生物的代谢活性。为了在尽可能小的曝气池中以最短的时间净化更多的有机污染物、提高处理系统的效率,必须向处理系统内提供足够的溶解氧。充氧时,曝气池内产生的紊流还可使废水与污泥充分混合,并使污泥在到达二沉池以前不会沉淀下来;经处理后排放的出水中带有一定的溶解氧,还具有后处理作用,使残存的有机物在天然水体中继续氧化分解。a.活性污泥系统中合适的溶解氧水平就好氧微生物而言,环境溶氧大于0.3mg/L时,对其正常代谢活动即已足够。活性污泥以絮体形式存在于曝气池中,经测定直径为500μm的活性污泥絮粒,当周围的悬浮液溶氧为2.Omg/L时,絮粒中心的溶氧已降至0.lmg/L,已处于微氧和缺氧的状况。因此溶氧过低必然会影响曝气池进水端或絮粒内部细菌的代谢速率。溶氧过高过低都会影响出水的水质。当溶氧过低时,菌胶团细菌胞外多聚物的产生受到抑制,从而导致污泥解絮;同时溶氧过低使吞食游离细菌的微型动物数量减少。当溶氧过高,除了能耗增加外,强烈的曝气空气搅拌还会使絮粒打碎,并易使污泥老化,这些也会使ESS增高而影响出水水质。一般认为,曝气池出口处溶解氧控制在2mg/L左右较为适宜,基本上可满足污泥中绝大多数好氧微生物对溶氧的需要。b.溶解氧的调节在鼓风曝气系统中,可控制进气量的大小来调节溶氧的高低。曝气池溶氧长期偏低时,可能有两种原因:一是活性污泥负荷过高,这时需增大曝气池中活性污泥的浓度或增加曝气池的容积,适当降低污泥负荷。其二是供氧设施功率过小或效率过低,这时,应设法改善之。由于氧的转移效率是气、液间接触表面积及接触时间的函数,故喷气口应使释放的气泡尽量小。c.鼓风曝气系统的控制传统活性污泥工艺采用的是好氧过程,因而必须供给活性污泥充足的溶解氧。这些溶解氧应既能满足活性污泥在曝气池内分解有机污染物的需要,也能满足活性污泥在二沉池及回流系统内的需要。另外,曝气系统还应起到充分混合搅拌的作用,保证活性污泥絮体与污水中的有机污染物充分混合接触,并保持悬浮状态。鼓风曝气系统的控制参数是曝气池污泥混合液的溶解氧DO值,控制变量是鼓入曝气池内的空气量Qa。Qa越大,即曝气量越多,混合液的DO值也越高。传统活性污泥工艺的DO值一般控制在2mg/L左右。DO控制在多少,与污泥浓度MLVSS以及F/M有关。一般说,F/M较小时,MLVSS较高,DO值也应适当提高。一些处理厂控制曝气池出口混合液的DO值大于3mg/L,以防止污泥在二沉池内厌氧上浮。DO是通过单纯的扩散进入微生物体内的,DO从混合液扩散进入污泥絮体,再扩散进入微生物体内,每个过程都需要推动力,因而保持较高的DO值对于保证微生物获得充足的氧也是有好处的。但DO值不能太高。对于同样的供氧量来说,要保持较高的DO值,则需要较多的曝气量,从而使曝气效率降低,浪费能源。当维持DO值不变时,曝气量Qa的变化主要取决于入流污水的BOD5,BOD5越高,Qa越大,反之越小。一般通过人工调节单台风机的风量来实现。在实际运行控制中,可用下式估算实际曝气量:Qa=f0(BODi-BODe)Q/300Ea式中:BODi、BODe分别为曝气池入、出流污水的BOD5(mg/L);Q为入流污水量(m3/d);f0为耗氧系数,指单位BOD被去除所消耗的氧量,与F/M有关,当F/M在0.2-0.5kgBOD/(kgMLVSS.d)时,f0可取1.0,当F/M小于0.15kgBOD/(kgMLVSS.d)时,f0可取1.1-1.2;Ea为曝气效率,Ea值与扩散器的种类、曝气池水深、入流水质、混合液的DO值、温度等因素有关系。对于微孔扩散系统,Ea一般在7%-15%之间。曝气池水越深,Ea越大。当入流污染物质,特别是一些油脂类、合成洗涤剂类物质浓度越高,Ea越小。DO值越高,Ea也越小。Ea可以用废气分析方法测定,也可以利用处理站运行数据反算。运行人员应摸索出本厂的实际f0值和Ea值,以方便曝气系统的控制。曝气池前段曝气量主要取决于微生物分解有机物需氧,只要满足这部分需氧,一般也能满足混合要求。但在曝气池后段特别是末端,曝气量主要取决于混合要求,微生物需氧已很少。有时虽然DO值维持不变,但曝气量不能满足混合需要,造成污泥沉积。为满足混合要求,使活性污泥保持悬浮状态,每平方米曝气池曝气量一般应大于2.2m3/h,实际运行中应注意核算。(2)匀质匀量地进水及合适的营养一水的调节a.设置前处理单元为了使废水均衡地进入处理系统,避免冲击负荷对后续构筑物的影响,在前处理设置调节池。因工业废水的种类复杂多样,水量、水质情况千差万别,故设置调节池时,应协同考虑水量、水质的调蓄作用。b.废水处理的营养问题废水处理系统中的微生物同其他生物一样,都需食物,需要营养。废水营养比例失调最终会影响到生化处理单元的效果,为此,需对活性污泥所需外加营养及其合理比例进行研究。据调查,有不少工业废水的营养成分单一,在采用生物法处理时需投加某些必需的、但在工业废水中缺乏的营养成分。在对废水投加营养的同时,应注意污泥中的微生物所需营养的合理比例。在处理营养不足的工业废水时,某些工厂往往投加营养过量,这样一方面增加了处理成本,过剩的营养又会随出水排放造成受纳水体的富营养化。一般说来,去除100份C所需的营养配比为BOD5:N:P=100:5:1。此外,Fe的需求量应为10-20mg/L(对厌氧处理来说,为了维持高速率的厌氧处理,还需要Co硫氨和VB12)。(3)改善污泥的质量,维持系统中污泥合适的数量--泥的调节工艺控制的主要目标是活性污泥的数量和质量。将系统内的活性污泥保持稳定而合理的数量,以及稳定而高效的质量,来稳定处理效果。活性污泥的数量指标有混合液污泥浓度MLSS和有机负荷F/M,通过F/M可确定需要多少MLVSS。质量指标有反映污泥老化程度的污泥龄SRT,反映沉降性能的SVI、SV等,以及反映生物活性的耗氧速率OUR。F/M本身也是一个重要的污泥质量指标。影响以上数量和质量指标的因素很多,主要包括进水水质水量的变化、温度等外界因素变化。工艺控制的主要任务就是采取控制措施,克服这些因素对活性污泥的影响,持续稳定地发挥处理作用。常用的控制措施从三方面实施:曝气系统的控制,污泥回流系统的控制,剩余污泥排放系统的控制(曝气系统的控制前已叙述)。a.污泥回流系统的控制回流系统的控制有三种方式:保持回流量不变;保持回流比R恒定;定期或随时调节回流量Qr(或回流比R),使系统状态处于最佳。每种方式适合于不同的情况。目前,有相当多的废水处理单位运行中保持回流量Qr不变,但应认识到这只适应于入流污水量Q相对恒定或波动不大的情况。如Q变化较大,会出现一系列的问题,因为Q的变化会导致活性污泥量在曝气池和二沉池内的重新分配。当Q增大时,部分曝气池的活性污泥会转移到二沉池,使曝气池内MLSS降低,而实际此时曝气池内需要更多的MLSS去处理增加了的污水,MLSS的不足会严重影响处理效果。另一方面,二沉池内污泥增加导致泥位上升,造成污泥流失,同时,Q增加导致二沉池水力负荷增加,进一步增大了污泥流失的可能性。Q减小时,部分活性污泥会从二沉池转移到曝气池,使曝气池MLSS升高,但此时曝气池实际上并不需要太多的MLSS,因为入流污水量减少,进入曝气池的有机物也减少了。保持回流量Qr恒定,能允许入流污水量在多大范围内变化,取决于很多实际因素。如入流BOD5、二沉池与曝气池容积之比及污泥的沉降性能。运行人员应摸索出本厂允许的入流污水量的波动幅度,在允许范围内尽量不调节回流量。如果保持回流比R恒定,在剩余污泥排放量基本不变的情况下,可保持MLSS、F/M以及二沉池内泥位Ls基本恒定,不随入流污水量Q的变化而变化,从而保证相对稳定的处理效果。第三种方式是定期或随时调节回流比和回流量,保持系统始终处于最佳状态。这种方式是稳定运行所必需的,但操作量较大,一些处理站实施困难。不管采取哪种控制方式,都需要确定合适的回流量或回流比。即使基本上不控制的第一种方式,也需要确定一个较合理的回流量。回流量及回流比的确定或控制调节有以下几种方法。1)按照二沉池的泥位调节回流比首先,应根据具体情况选择一个合适的泥位Ls,亦即选择一个合适的污泥层厚度Hs。泥层厚度一般应控制在0.3-0.9m之间,且不超过泥位Ls的1/3,然后调节回流泥量,使泥位Ls稳定在所选定的合理值。一般情况下,增大回流量Qr,可增大泥层厚度。应注意调节幅度每次不要太大,如调回流比,每次不要超过5%,如调回流量,则每次不要超过原来值的10%。具体每次调多少,多长时间以后再调节下一次,应根据本厂实际情况而定。一般情况下,入流污水量1d之内总在变化,泥位也在波动,为稳妥起见,应在每天的流量高峰,即泥位最高时,测量泥位,并以此作为调节回流比的依据。2)按照沉降比调节回流比或回流量若用100mL量筒进行的沉降试验基本上与二沉池内的沉降一致,则由测得的SV30值可以计算回流比,用于指导回流比的调节。回流比与沉降比之间存在以下关系:R=(保持系统平衡,使进水/泥比例平衡,R=回流污泥量/进水污量(或出水污水量))为了使SV充分接近二沉池内的实际状态,SV30尽量采用SSV30,即搅拌状态下的沉阵比,可以提高回流比控制的准确性。3)按照回流污泥及混合液的浓度调节回流比可用回流污泥浓度RSS和混合液污泥浓度MLSS指导回流比R的调节。R与RSS及MLSS的关系如下:R=该法只适用于低负荷工艺,即入流SS不高的情况下,否则会造成误差。4)依据污泥沉降曲线调节回流比沉降性能不同的污泥具有不同的沉降曲线。易沉污泥达到最大浓度所需时间短,沉降性能差的污泥达到最大浓度则需要较长的时间。回流比的大小,直接决定污泥在二沉池内的沉降浓缩时间。对于某种特定的污泥,如果调节回流比使污泥在二沉池内的停留时间恰好等于该种污泥通过沉降达到最大浓度所需要的时间,则此时回流污泥浓度最高,且回流比最小。沉降曲线的拐点处对应的沉降比,即为该种污泥的最小沉降比,用SVM表示。根据由SVM确定的回流比R运行,可使污泥在池内停留时间较短,同时污泥浓度较高。回流比R与SVM的关系如下:R=5)四种回流比调节方法的比较上述四种调节方法,各有其优缺点。根据泥位调节回流比,不易造成由于泥位升高而使污泥流失,出水SS较稳定,但回流污泥浓度RSS不稳定。按照SV30调节回流比,操作非常方便,但当污泥沉降性能不佳时,不易得到高浓度的RSS,使回流比R比实际需要值偏大。按照RSS和MLSS调节回流比,由于要分析RSS和MLSS,比较麻烦,一般可作为回流比的一种校核方法。用沉降曲线调节回流比,简单易行,可获得高RSS,同时使污泥在二沉池内停留时间最短;该法尤其适于硝化工艺及除磷工艺。在运行管理中,上述几种方法可以并用。例如,按照沉降曲线确定回流比,并经常用MLSS和RSS校验,另外还应经常观测泥位,防止泥位太高,造成污泥流失。b.剩余污泥排放系统的控制活性污泥系统每天都要产生一部分活性污泥,使系统内总的污泥量增多。要使总的污泥量基本保持平衡,就必须定期排放一部分剩余活性污泥。事实上,排泥是活性污泥工艺控制中最重要的一项操作,它比其他任何操作对系统的影响都大。通过排泥量的调节,可以改变活性污泥中微生物种类和增长速度,可以改变需氧量,可以改善污泥的沉降性能,因而可以改变系统的性能。目前,有相当多的一部分处理厂并不有意识地调节排泥量。但应认识到,这只适应于入流水质水量及环境因素变化不大的情况。当入流水质水量及环境因素发生波动,活性污泥的工艺状态也将随之变化,因而处理效果不稳定。通过排泥量调节,可以克服以上的