20146456doi10.6041/j.issn.1000-1298.2014.06.009*710048。m、α、βρ。。。。TP242.6A1000-1298201406-0053-052013-07-072013-07-21*2009ZX04014E-mailshienxiu@163.comMobilerobotMR。。1-2。。A*3、4、5-6、7、89。、、10。。m、α、βρ。11.1。。11。12。1。1Fig.1AntsforagingsimulationabT=0cT=11AEBCDH。ACHEECHABCD1BHD21a。AE301。1。BC、CD、BH、HDAE。BC、CD、BH、HD1b。BCDBHD。1c20B、CDE。BCDBCD。1.2。RS。。RS。。。。。123…n。。。。S=123…N。g001g102gXYn。、S。1.32。2Fig.2Antcolonyalgorithmflowchart10101。D=01…n-1m、α、β、ρNc。Bkkk=12…m。SES。2ijpkijt=ταijtηβijt∑s∈Cταistηβistj∈C0j瓝C{1ηijt=1dij2C=D-Bk3dij———ijηij———ijτij———ij123BkkjBk。42~3。5τijτijt+1=ρτijt+Δτijtt+14Δτijtt+1=∑mk=1Δτkijtt+15Δτkijt=Q/Lkkij0kij{6Q———Lk———k64~5。26。α、β、ρ、m、Q。3。4520143Fig.3Twopathplanningenvironmenta1b22.1。13。7。α=1β=5ρ=0.5Q=100m10、30、50、80、100、150200。4180250。mmm。4mFig.4Effectofantnumbermonalgorithmperformance2.2。ρ14。ρρ。m=100α=1β=5Q=100ρ=0.1、0.2、0.3、0.4、0.5、0.70.95。51ρ=0.72ρ=0.5。5ρFig.5Effectofpheromoneevaporationcoefficientρonalgorithmperformance2.3α。β。α=0。β=0。α=1β6。6βFig.6Effectofβonalgorithmperformance6αβββ=7α。75567αFig.7Effectofαonalgorithmperformance。7αα=1、β=7。3。Matlab。1400。m=80Nc=100α=1β=71ρ=0.72ρ=0.5。89。8。98Fig.8Theoptimaltrajectorya1b2。。2832。9Fig.9Convergencecurvesa1b241。m、α、β、ρ。2mNcmm。3ρρ。4β。5α。1.J.2012342202-206.LiQingWangLijunChenBoetal.AnimprovedartificialpotentialfieldmethodwithparametersoptimizationbasedongeneticalgorithmsJ.JournalofUniversityofScienceandTechnologyBeijing2012342202-206.inChinese2.J.201128127-31.LianXiaofengLiuZaiwenZuoMin.ResearchondynamicfuzzyartificialpotentialfieldmethodformobilerobotpathplannlingJ.ComputerSimulation201128127-31.inChinese3.A*J.20125281085-1089.652014WangDianjun.Indoormobile-robotpathplanningbasedonanimprovedA*algorithmJ.JournalofTsinghuaUniversityScienceandTechnology20125281085-1089.inChinese4.J.2011284193-195303.ShiTiefeng.ResearchonpathplanningformobilerobotbasedonimprovedgeneticalgorithmJ.ComputerSimulation2011284193-195303.inChinese5.J.2011286231-234.ZhangYinlingNiuXiaomei.SimulationresearchonmobilerobotpathplanningbasedonantcolonyoptimizationJ.ComputerSimulation2011286231-234.inChinese6.α、β、ρ-TSPJ.2004287597-601.YeZhiweiZhengZhaobao.ConfigurationofparametersαβρinantalgorithmJ.JournalofWuhanUniversityGeomaticsandInformationScience2004287597-601.inChinese7.J.20123171085-1089.ZhouLikunLiuHongzhao.Anadaptiveartificialfishschoolalgorithmforpathplanningofmobiletank-clearingrobotJ.MechanicalScienceandTechnology20123171085-1089.inChinese8.J.2010323397-402.LiQingXuYinmeiZhangDezhengetal.GlobalpathplanningmethodformobilerobotsbasedontheparticleswarmalgorithmJ.JournalofUniversityofScienceandTechnologyBeijing2010323397-402.inChinese9.J.2013303323-326375.YeZhaoliYuanMingxinChengShuaietal.NewfireworksexplosiveimmuneplanningalgorithmformobilerobotsJ.ComputerSimulation2013303323-326375.inChinese10.J.2012411108-113.11.J.2011355637-641.ZhaoJuanpingGaoXianwenFuXiuhui.ImprovedantcolonyoptimizationalgorithmforsolvingpathplanningproblemofmobilerobotJ.JournalofNanjingUniversityofScienceandTechnology2011355637-641.inChinese12ErinBAbiyevRIbrahimD.TeachingrobotnavigationinthepresenceofobstaclesusingacomputersimulationprogramJ.Procedia-SocialandBehavioralSciences201022565-571.13ArdiyantoIMiuraJ.Real-timenavigationusingrandomizedkinodynamicplanningwitharrivaltimefieldJ.RoboticsandAutonomousSystems201260121579-1591.14.J.2011333274-286.YeWeiyaoWangChunxiangYangMingetal.VirtualobstaclesbasedpathplanningformobilerobotsJ.Robot2011333274-286.inChinese15BradenEStenningTimothyDBarfoot.Pathplanningwithvariable-fidelityterrainassessmentJ.RoboticsandAutonomousSystems20126091135-1148.16VolosChKKyprianidisIMStouboulosIN.AchaoticpathplanninggeneratorforautonomousmobilerobotsJ.RoboticsandAutonomousSystems2012604651-656.17KoutsonikolasaDimitriosDasaSMHuCY.PathplanningofmobilelandmarksforlocalizationinwirelesssensornetworksJ.ComputerCommunications200730132577-2592.ResearchonMethodofGlobalPath-planningforMobileRobotBasedonAnt-colonyAlgorithmShiEnxiuChenMinminLiJunHuangYumeiSchoolofMechanicalandInstrumentalXi'anUniversityofTechnologyXi'an710048ChinaAbstractTheglobalpath-planningmethodforMRisstudiedbasedonthecharacteristicsofantcolonyalgorithm.TheenvironmentinformationofaplaneonwhichmobilerobotMRworksisexpressedbythegridmethod.Themainparametersusedbyantcolonyalgorithmsuchasthenumberofantmarousefactorαexpectedarousefactorβandinformationelementhangovercoefficientsρwhichaffecttheresultofpathplannedincludingthelengthofthepathplannedandtheefficiencyplanningpatharesimulated.Itisfoundfromthesimulationresultthatthebetterglobalpathcanbegotten.Thelengthofthepathplannedisshorterandtheefficiencyofplanningpathishigherwhentheparametersmαβandρarematchedbetter.BasedontheresultsofabovesimulationthepathisplannedforMRwhichworksontwodifferentwork-planeusingantcolonyalgorithmwiththebestmatchingparametersobtainedfromthesimulation.TheaccuracyoftheoreticalresearchisverifiedbytheglobalpathplannedforMRworkingunderthedifferentwork-plane.KeywordsMobilerobotAnt-colonyalgorithmWorkpathplanningMatchingparameters756