宁夏银川市普通高中2015届高三四月教学质量检测数学(文)试题Word版含解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-2015年宁夏银川市高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x∈N|0≤x≤5},∁AB={1,3,5},则集合B=()A.{2,4}B.{0,2,4}C.{0,1,3}D.{2,3,4}【考点】:补集及其运算.【专题】:计算题.【分析】:根据题意,先用列举法表示集合A,进而由补集的性质,可得B=∁A(∁AB),计算可得答案.【解析】:解:根据题意,集合A={x∈N|0≤x≤5}={0,1,2,3,4,5},若CAB={1,3,5},则B=∁A(∁AB)={0,2,4},故选B.【点评】:本题考查补集的定义与运算,关键是理解补集的定义.2.(5分)若复数z满足(1﹣i)z=4i,则复数z对应的点在复平面的()A.第一象限B.第二象限C.第三象限D.第四象限【考点】:复数的代数表示法及其几何意义.【专题】:计算题.【分析】:根据所给的关系式整理出z的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,点的代数形式的最简形式,写出对应的点的坐标,判断出位置.【解析】:解:∵复数z满足(1﹣i)z=4i,∴z===﹣2+2i∴复数对应的点的坐标是(﹣2,2)∴复数对应的点在第二象限,故选:B.【点评】:本题考查复数的代数形式的表示及其几何意义,本题解题的关键是求出复数的代数形式的表示形式,写出点的坐标.3.(5分)已知α为第二象限角,sinα=,则sin的值等于()A.B.C.D.【考点】:两角和与差的正弦函数.【专题】:三角函数的求值.【分析】:利用两角和差的正弦公式进行求解即可.【解析】:解:∵α为第二象限角,sinα=,-2-∴cosα=,则sin=sinαcos﹣cosαsin=×﹣×=,故选:C【点评】:本题主要考查三角函数值的计算,根据两角和差的正弦公式是解决本题的关键.4.(5分)从集合A={﹣1,1,2}中随机选取一个数记为k,从集合B={﹣2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为()A.B.C.D.【考点】:古典概型及其概率计算公式.【专题】:概率与统计.【分析】:本题是一个古典概型,试验发生包含的事件(k,b)的取值所有可能的结果可以列举出,满足条件的事件直线不经过第三象限,符合条件的(k,b)有2种结果,根据古典概型概率公式得到结果.【解析】:解:由题意知本题是一个古典概型,试验发生包含的事件k∈A={﹣1,1,2},b∈B={﹣2,1,2}得到(k,b)的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当时,直线不经过第三象限,符合条件的(k,b)有2种结果,∴直线不过第四象限的概率P=.故选A.【点评】:古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、体积的比值得到.5.(5分)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是()-3-A.πB.C.D.【考点】:由三视图求面积、体积.【专题】:计算题.【分析】:由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,据此可计算出体积.【解析】:解:由三视图可知:该几何体是两个同底的半圆锥,其中底的半径为1,高为=,因此体积=2×=.故选D.【点评】:本题考查由三视图计算原几何体的体积,正确恢复原几何体是计算的前提.6.(5分)已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A.B.C.2或D.或【考点】:双曲线的简单性质.【专题】:计算题;分类讨论.【分析】:利用双曲线的焦点所在坐标轴,根据双曲线的渐近线求得a和b的关系,进而根据求得c和b的关系,代入离心率公式,解答即可.【解析】:解:①当双曲线的焦点在x轴上时,由渐近线方程,可令a=k,b=k(k>0),则c=2k,e=2;②当双曲线的焦点在y轴上时,由渐近线方程,可令a=k,b=k(k>0),则c=2k,e=;离心率为:2或.故选C.【点评】:本题考查双曲线的离心率的性质和应用,解题时要注意公式的合理运用和分类讨论.7.(5分)若x,y满足约束条件,则z=3x﹣y的最小值是()A.﹣5B.﹣4C.﹣3D.﹣2-4-【考点】:简单线性规划.【专题】:不等式的解法及应用.【分析】:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解析】:解:由约束条件作出可行域如图,化z=3x﹣y为y=3x﹣z,由图可知,当直线y=3x﹣z过A(0,4)时,直线在y轴上的截距最大,z有最小值.∴zmax=3×0﹣4=﹣4.故选:B.【点评】:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)某程序框图如图所示,运行该程序时,输出的S值是()A.44B.70C.102D.140【考点】:程序框图.【专题】:图表型;算法和程序框图.-5-【分析】:模拟执行程序框图,依次写出每次循环得到的S,K的值,当S=102时,满足条件S>100,退出循环,输出S的值为102.【解析】:解:模拟执行程序框图,可得K=1,S=0S=2,K=4不满足条件S>100,S=10,K=7不满足条件S>100,S=24,K=10不满足条件S>100,S=44,K=13不满足条件S>100,S=70,K=16不满足条件S>100,S=102,K=19满足条件S>100,退出循环,输出S的值为102.故选:C.【点评】:本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的S,K的值是解题的关键,属于基本知识的考查.9.(5分)在△ABC中,若向量,的夹角为60°,=2,且AD=2.∠ADC=120°,则=()A.2B.2C.2D.6【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:根据已知条件容易得到D为边BC的中点,△ABD为等边三角形,从而可得到AB=2,BC=4,从而要求先来求,从而得出答案.【解析】:解:如图,由知,D是BC边的中点;∠ADC=120°;∴∠ADB=60°;又∠ABD=60°;∴△ABD是等边三角形,AD=2;∴AB=2,BC=4;∴;∴.故选:C.-6-【点评】:考查向量数乘的几何意义,等边三角形的概念,求向量长度的方法:先去求向量的平方,以及数量积的计算公式.10.(5分)已知定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时,f(x)=log2(x+1),则f(7)=()A.﹣1B.1C.﹣3D.3【考点】:函数奇偶性的性质.【专题】:函数的性质及应用.【分析】:函数f(x)的图象关于直线x=2对称且为奇函数,所以f(x)=f(﹣4﹣x)=﹣f(4+x),从而f(8+x)=f(x),即函数f(x)的周期为8,代入验证即可.【解析】:解:函数f(x)的图象关于直线x=2对称且为奇函数.∴f(x)=f(﹣4﹣x)=﹣f(4+x)∴f(8+x)=f(x)即函数f(x)的周期为8∴f(7)=f(﹣1)=﹣f(1)=﹣1,故选A【点评】:本题考查的是函数的奇偶性及周期性的综合运用,另外利用数形结合也可得到答案.11.(5分)设a,b,c表示三条直线,α,β表示两个平面,则下列命题中逆命题不成立的是()A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.a,b⊂α,a∩b=P,c⊥a,c⊥b,若α⊥β,则c⊂β【考点】:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】:空间位置关系与距离.【分析】:根据面面平行的几何特征及线面垂直的性质,可判断A;根据线面平行的判定定理,可判断B;根据面面垂直的几何特征,可判断C;根据线面垂直的判定定理及面面垂直的判定定理,可判断D.【解析】:解:A的逆命题为c⊥α,若α∥β,则c⊥β,根据面面平行的几何特征及线面垂直的性质,可得其逆命题成立;B的逆命题为b⊂α,c⊄α,若b∥c,则c∥α,根据线面平行的判定定理,可得其逆命题成立;C的逆命题为b⊂β,若β⊥α,则b⊥α,根据面面垂直的几何特征,当b与两平面的交线不垂直时,结论不成立,故C的逆命题不成立;-7-D的逆命题为a,b⊂α,a∩b=P,c⊥a,c⊥b,即c⊥α,若c⊂β,则α⊥β,由面面垂直的判定定理,可得其逆命题成立;故选C【点评】:本题以逆命题的判定为载体考查了空间直线与平面,平面与平面位置关系的判定,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.12.(5分)一个大风车的半径为8m,12min旋转一周,它的最低点Po离地面2m,风车翼片的一个端点P从Po开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是()A.B.C.D.【考点】:在实际问题中建立三角函数模型.【专题】:三角函数的图像与性质.【分析】:由题意可设h(t)=Acosωt+B,根据周期性=12,与最大值与最小值分别为18,2.即可得出.【解析】:解:设h(t)=Acosωt+B,∵12min旋转一周,∴=12,∴ω=.由于最大值与最小值分别为18,2.∴,解得A=﹣8,B=10.∴h(t)=﹣8cost+10.故选:B.【点评】:本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.(5分)如图,根据图中的数构成的规律,a所表示的数是144.【考点】:归纳推理.【专题】:计算题;推理和证明.-8-【分析】:根据杨辉三角中的已知数据,易发现:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积,即可得出结论.【解析】:解:由题意a=12×12=144.故答案为:144.【点评】:此题主要归纳推理,其规律:每一行的第一个数和最后一个数与行数相同,之间的数总是上一行对应的两个数的积.通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.14.(5分)若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=4.【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:由抛物线方程求出抛物线的焦点坐标,由直线倾斜角求出斜率,写出直线方程,和抛物线方程联立求得M的坐标,再由抛物线焦半径公式得答案.【解析】:解:如图,由抛物线y2=4x,得F(1,0),∵直线FM的倾斜角为60°,∴,则直线FM的方程为y=,联立,即3x2﹣10x+3=0,解得(舍)或x2=3.∴|FM|=3+1=4.故答案为:4.【点评】:本题考查了抛物线的简单几何性质,考查了数学转化思想方法,是中档题.15.(5分)已知△ABC的内角A,B,C对边分别为a,b,c,若cosC=,且sinC=sinB,则△ABC的内角A=.【考点】:正弦定理.【专题】:解三角形.-9-【分析】:利用余弦定理表示出cosC,代入已知第一个等式整理得到关系式,第二个关系式利用正弦定理化简,代入上式得出的关系式整理表示出a,再利用余弦定理表示出cosA,把表示出的a与c代入求出cosA的值,即可确定出A的度数.【解析】:解:由已知等式及余弦定理得:cosC==,即a2+b2﹣c2=2a2①,将sinC=sinB,利用正弦定理化简得:c=b②,②代入①得:a2=b2﹣b2=b2,即a=b,∴cosA===,则A=.故答案为:.【点评】:此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.16.(5分)已知,则使f(x)﹣ex﹣m≤0恒成立的m的范围是[2,+∞).【考点】:分段函数的应用;函数恒成立问题.【专题】:函数的性

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功