金融计量学第三章非典型回归模型及其应用学习目标:熟悉异方差、自相关性、多重共线性的检验方法;了解广义矩(GMM)模型及其应用;熟悉面板数据模型及其在金融计量中的应用;掌握Logisitic模型和Probit模型的应用。第三章非典型回归模型及其应用第一节普通最小二乘假设的违背第二节广义矩模型第三节面板数据(paneldata)模型第四节离散因变量模型应用普通最小二乘假设的违背第一节普通最小二乘假设的违背如前所述,最小二乘回归具有一系列前提假设。判断是否满足最小二乘回归的假设是最重要的。在此,我们特别需要检验:(1)异方差性——导致不满足残差具有不变方差的假设;(2)自相关——导致不满足残差之间相互独立的假设;(3)多重共线性——导致不满足自变量之间不相关的假设。在本节中,我们重点对违背最小二乘回归假设的这三种情况进行分析。普通最小二乘假设的违背一、异方差性分析(一)异方差问题在多元线性回归模型中,随机扰动项满足同方差性的基本假定,即它们具有相同的方差。但如果随机扰动项的方差并非不变的常数,则称为异方差性(Heteroskedasticity),即指随机变量服从不同方差的分布。异方差性用公式表达为:。在计量经济学中,产生异方差的原因有多种,比如模型中遗漏了某些解释变量,模型函数设定误差,样本数据的测定误差,以及随机因素的影响等等。i2i2var()1,2,,iiiN普通最小二乘假设的违背(二)异方差检验1、图示检验法残差图分析残差图分析是在利用Eviews进行回归模型估计后,在方程窗口点击“Resids”按钮,直接在屏幕上看到残差分布图。如果残差分布图的区域逐渐变窄或变宽,或出现偏离带状区的复杂变化,则表明存在异方差性。相关图分析异方差检验残差图普通最小二乘假设的违背2、White检验怀特(White)提出的异方差的一般检验方法,具有简便有效的特点。假定模型为:White检验步骤如下:(1)首先应用OLS估计回归方程,得到残差。(2)然后进行辅助回归(3)计算统计量值。(4)在的原假设下,服从自由度为5的分布。如果大于给定显著水平a对应的临界值,则拒绝原假设,表明随机误差项中存在异方差。012iiiiyxzuiu2NR1250aaa2NR222(5)a普通最小二乘假设的违背(三)异方差的解决方法1、模型变换法模型变换法是对存在异方差的总体回归方程作适当的变换,使之满足同方差的假定,然后在运用OLS估计。设一元回归模型为:其中,具有异方差性,表现为:,其中为常数,0。经过变换可得变换后模型的随机模型的误差项具有同方差性所以,可以对变换后的模型进行OLS估计。iiiy10i)()(22iiixfVar2)(ixf)()()(1)(10iiiiiiixfxfxxfxfy普通最小二乘假设的违背2、变量对数变化法仍以模型为例,变量、和、、替代,则对应的模型别转换为:对上述模型进行估计,通常会降低异方差的影响。原因有二:一是对数转换能够将测度变量的数值所有缩小,从而将两个变量值间10倍的差异缩为2倍的差异;二是经过对数变化后的线性模型其残差相应变为相对误差,从而具有相对小的数值。iiiy10iyixlniylnix01lnlniiiyx普通最小二乘假设的违背3、加权最小二乘法(WLS)当已知或可以估计时,可以采用加权最小二乘法加以处理。所谓加权,是指对于不同的残差赋予不同的权重。具体来说,在OLS估计时,我们使最小化而估计出了和的值,在此过程中对于不同的给予了相同的权重,从而模型不再精确。为了避免这一问题,正确的做法是将较小的给予较大的权重,而将较大的给予较小的权重,以此对残差提供的信息的重要程度加以调整,提高参数估计的精度。2i2102)(iiixy012i2i2i普通最小二乘假设的违背二、自相关性(一)自相关问题在经典假定中,要求随机误差项满足不相关的假定,即,对于任意成立。当随机误差项仍然满足零期望、同方差的假定,但是违反假定时,称随机误差项存在自相关性。一阶自相关就是指:其中,是自相关系数,满足:0),(jiCovji0),(jiCovtttv12111),()()(),(ttttttCovVarVarCov=普通最小二乘假设的违背(二)自相关的检验1.图示检验法可以用残差图来直观判断误差项的自相关性,主要有两种方法:一是以为横轴以为纵轴作残差序列的散点图。二是以时间t为横轴,以为纵轴作散点图。2.DW检验1ttt自相关性图示检验0(b)tt0(a)(c)(d)普通最小二乘假设的违背(三)自相关问题的解决1.广义差分法在自相关系数已知的情况下,可以用差分法对模型进行变换,使误差项满足无自相关的假定,从而进行OLS估计。将滞后一期,两边乘以,可得:用减上式,变量替换,可以得到:至此,变换后模型的误差项满足经典假定,可以进行OLS估计。tttxy10tttxy1101--tttxy10tttvxy10普通最小二乘假设的违背2.Durbin两步法与Cochrane-Orcutt法在自相关系数未知的情况下,可以利用回归算出的DW统计量来算出值,或是构建辅助回归来求出值,再进行差分运算,其思想与广义差分法较为类似。对一次差分后的OLS残差序列进行检验,如果仍然存在自相关,则要继续进行迭代和差分,直到残差不存在自相关为止。在实际处理中,一般两次迭代,就基本满足无自相关的要求了。tttv1tv普通最小二乘假设的违背三、多重共线性(Multicollinearity)(一)多重共线性问题提出在现实经济中,当我们构建多元线性回归模型时,不可避免的引入两个或两个以上变量,而这些变量之间或多或少的存在相互关联。当这些解释变量之间高度相关甚至完全线性相关时,就会出现所谓的多重共线性问题。多重共线性是包括完全多重共线性(Perfectmulticollinearity)和近似多重共(nearmulticollinearity)。完全多重共线性是指若干解释变量或全部解释变量之间存在着严格的共线性关系。普通最小二乘假设的违背多重共线性产生的原因主要有以下几个方面:一是经济变量之间的内在联系。很多经济变量之间存在着因果关系,或是共同受其它因素的影响,比如说,收入消费等宏观经济指标在经济繁荣时都趋向增长,而在经济衰退时在有所衰减,在长期内变化存在一致性。所以多重共线性是计量经济模型中常见的问题,只是影响程度强弱有所不同。二是数据的收集和计算方法。比如说,抽样限于总体中多个回归元取值的一个有限制的范围内。三是模型设定偏差。比如说,在解释变量的范围很小情况下,在回归方程中添加多项式。普通最小二乘假设的违背若模型存在多重共线性,则在金融计量中造成一系列后果,主要包括:一是参数估计值不准确,同时t值变小,得出错误结论。二是无法区分单个变量对被解释变量的影响作用。三是变量的显著性检验失效。普通最小二乘假设的违背(二)多重共线性检验1.系数判定法。从经济理论上知道某个解释变量对因变量有重要影响,同时决定系数很大,如果模型中全部或部分参数的t检验不显著,一般就怀疑是多重共线性所致。2.相关系数矩阵法。做出各个解释变量的相关系数矩阵,如果相关系数在0.8以上,则可以初步判定存在多重共线性。但是,应该注意的是,较高的相关系数只是判断多重共线性的充分条件,并非必要条件。普通最小二乘假设的违背3.容忍度与方差膨胀因子检验法方差膨胀因子VIF可以用来测度模型的解释变量之间是否多重共线性。与方差膨胀因子联系的容忍度指标,也可以用检测多重共线性问题。容忍度的定义为:根据一般经验,当或时,存在轻度多重共线性;当或时,存在中等程度的多重共线性;当或时,存在严重多重共线性。211iiTOLRVIFmax()5iVIFmin()0.2iTOL5max()10iVIF0.1min()0.2iTOLmax()10iVIFmin()0.1iTOL普通最小二乘假设的违背4.逐步回归判别法。以Y为被解释变量逐个引入解释变量,构成回归模型并进行参数估计,根据决定系数的变化决定引入的变量是否能够加入到模型中。如果决定系数变化显著,则新引入的解释变量是一个独立的解释变量;如果决定系数变化不显著,则说明新引入的解释变量不显著,或是与现有的解释变量存在着共线性。普通最小二乘假设的违背(三)多重共线性的修正与处理在计量经济模型中,为了全面反映各方面的影响因素,总是尽量选取被解释变量的所有影响因素。如果模型的目的只是进行预测,只要模型的决定系数较高,能正确映不同解释变量的总影响,且解释变量的关系在预测期内没有显著的结构性变化,则可以忽略多重共线性的问题。但是,如果要区分每个解释变量的单独影响,应用模型进行结构分析,则要消除多重共线性的影响。可以考虑以下做法:一是剔除引起共线性的变量。二是变换模型的形式。三是增加样本容量。广义矩模型第二节广义矩模型一、广义矩介绍广义矩(generalizedmethodofmoments,GMM)是一个稳健型估计,因为它要求扰动项的准确分布信息,允许随机误差项存在异方差和序列相关,所以得到的参数估计比其他参数估计方法更符合实际。可以证明,GMM包容了许多常用的估计方法,普通最小二乘法、广义最小二乘法和极大似然法都是它的特例。广义矩模型二、广义矩方法(一)矩估计方法(MM)广义矩估计方法是矩估计方法的一般化形式。矩估计是基于实际参数满足一定矩条件而形成的一种参数估计方法。给定一组随机变量{,,…,}和一组参数,是k维列向量,代表k个解释变量;是一个k维列向量,代表k个待定参数。假定x和存在函数关系,且=0,真实值是这个方程式唯一的解。=0称为母体矩条件,相对应的样本矩条件为=0,如果r=rank()=k;那么该齐次方程组可以得到唯一解,其解即为估计量。我们可以证明在满足一系列前提条件下,具有一致性和渐进正态性1x2xnxix(;)gx((;))Egx0((;))Egx11(;)nigxn1(;)nigx广义矩模型(二)广义矩估计(GMM)在上面对矩估计方法的介绍中,我们注意到母体矩条件=0的解是唯一的,这是因为r=rank()=k,k是参数个数,且这个解就是参数真实值。但是在实际情况中,矩约束条件个数r常常大于参数个数k,即出现“过度确认”问题,此时方程组会产生无穷多个解,由此得到的估计量无法收敛到参数真实值,原来的方法失效,于是Hansen提出了广义矩估计方法。其基本思想是为r个条件赋以不同的权重,选取一个最优权重矩阵W*,使得r个母体矩条件得到最大程度的满足,然后对目标函数J()极小化,求得参数的估计量。((;))Egx1(;)nigx0广义矩模型(三)对GMM估计量的一致性和渐进正态性的证明1、关于GMM估计量的一致性的证明2、关于GMM估计量的渐进正态性的证明广义矩模型(四)GMM应用的说明GMM方法的优势在于建模分析时可以考虑尽量多的变量,但是经过变量的重新组合后,回归方程中需要被估计的参数仍然在较少的水平。因此,按照计量经济学的相关原理可知,这种方法能够提高估计的精确性和模型的可信性。广义矩模型三、利用Eviews软件进行广义矩估计利用Eveiws软件进行GMM估计,需要在方程设定窗口的估计方法中选择GMM。在方程说明对话框中的工具变量列表(Instrumentlist)中。列出工具变量名。如果要保证GMM估计量可识别,工具变量个数不能少于被估计参数个数。常数会自动被Eviews加入工具变量表中。面板数据(