3地质构造与地质图识别本章要点本章主要讲述了地质构造的基本概念与相关知识,介绍了地质图的阅读等内容,其中地质年代、岩层铲状、各种构造的识别与工程评价是本章重点。学习目标通过学习本章内容,了解地质年代的识别方法,掌握各种地质构造的特点和工程评价,学会阅读地质图。现代地质学认为,地壳被划分成许多刚性的板块,而这些板块在不停地彼此相对运动。这种地壳运动,引起海陆变迁,产生各种地质构造,形成山脉、高原、平原、丘陵、盆地等基本地貌形态。地质构造是地壳运动的产物,是岩层或岩体在地壳运动中,由于构造应力长期作用使之发生永久性变形变位的现象。地质构造大大改变了岩层和岩体原来的工程地质性质,影响岩体稳定,增大岩石的渗透性,为地下水与运动和富集创造了良好的场所。因此,研究地质构造不但有阐明和探讨地壳运动发生、发展规律的理论意义,而且有指导工程地质、水文地质、地震预测预报工作和地下水资源的开发利用等生产实践的重要意义。3.1地史的基本知识3.1.1地史一、地质年代地质年代又称为地质时代,是指各种地质事件(如地层的形成)发生的时代和年龄,它包括两方面的含义:一是指地质事件发生距今的实际年数,称为绝对地质年代。二是指地质事件发生的先后顺序,称为相对地质年代。地壳发展演变的历史叫做地质历史,简称地史。地球的年龄至少有45.5亿年。查明地质事件发生(或地质体形成)的时代和先后顺序是十分重要的,前者称为绝对地质年代,后者称为相对地质年代。要了解一个地区的地质构造、地层的相互关系,以及阅读地质资料和地质图件时,必须具备地质年代的知识。1、绝对地质年代绝对地质年代,又称为同位素地质年龄,单位以百万年计。它是依据岩石中所含放射性元素及其蜕变产物的比例,用衰变常数(半衰期)进行计算和确定。2、相对地质年代相对地质年代是依据地层形成的顺序和生物演化规律的原理来划分和确定,分别叫做地层层序律和生物层序律。3、地质年代表通过对全世界各地区地层剖面的划分和对比,综合岩石同位素年龄测定和古生物研究资料,结合我国实际,将地球发展演化的历史,按从新到老的顺序,进行系统性的排列,编制而成的年表,称为地质年代表,见表3-1。地质年代表的内容包括了地质年代划分的顺序、表3-1我国地质时代划分表名称、代号和绝对年龄,以及历次重大构造运动和生物演化规律。它简明扼要地反映了地壳发展的主要特征,便于地质工作对比应用。从古到今,地质年代名称:震旦纪(系Z)、寒武纪(系)、奥陶纪(系O)、志留纪(系S)、泥盆纪(系D)、石炭纪(系C)、二叠纪(系P)、三叠纪(系T)、侏罗纪(系J)、白垩纪(系K)、第三纪(系R)(早第三纪(系E)、晚第三纪(系N))、第四纪(系Q)二、地层单位地层和岩层的区别:岩层-由两个平行或近于平行的界面(岩层面)所限制的同一岩性组成的层状岩石,称为岩层,岩层是沉积岩的基本单位而没有时代的含意。地层-在地质学中,把某一地质时期形成的一套岩层及其上覆堆积物统称为那个时代的地层。地层是地壳发展过程中,先后形成的具有一定层位的层状或非层状岩石的总称,是一定地质年代内形成的各种岩石。为了研究地壳发展历史,地质制图以及地层对比等需要,把组成地壳岩层划分成不同类型、不同级别的单位,称为地层单位。地层单位有以下几种:1、年代地层单位年代地层单位,又称为国际性地层单位,是指以地层的形成时限(地质时代)作为依据而划分的地层单位,它具有严格的时间界限,其顶底面都是以等时面为界。年代地层单位与统一的地质年代表中地质年代单位宙、代、纪、世相对应,分别称为宇、界、系、统。如在白垩纪形成的地层,不论其岩性、厚度或化石的差异如何,统称为白垩系地层。地质年代单位年代地层单位宙------------------宇代----------------界纪----------系世----统2、岩石地层单位岩石地层单位又称地方性地层单位,是依据岩性变化、岩性组合、沉积韵律及沉积间断等岩性特征划分的地层单位,它没有严格的时间界限,但它反映了特定地区的沉积环境特征。岩石地层单位按级别大小划分为群、组、段、层四级。(1)组组是岩石地层划分的基本单位,岩性上表现为有一定的规律性和均一性。组的厚度可大可小,可以从几米~几百米、甚至几千米。组的界限一般划分在明显的岩性变化面上。如北京昌平~天津蓟县一带的下马岭组主要是页岩,长龙山组主要是砂岩,景儿峪组主要是泥灰岩,三个组的分界明显。组的命名一律用最初建组的地名加组来命名,如徐庄组、栖霞组等。(2)段段是比组低一级的岩石地层单位,它主要是依据明显的岩性特征划分出来的岩性段,是两种以上岩层构造的组的再分,代表组的一部分。段可用地名加段或岩石名称加段来命名,如长龙山组可再分为下部龙山段(砂岩)、上部前坡段(页岩);飞仙关组划分为下部灰岩段、上部页岩段等。(3)层层是岩石地层单位中级别最小的单位,是一个能从岩性上区别于其上下层的单位层,一般没有统一的命名。(4)群群是最大的岩石地层单位,它由成因上相互联系的两个或两个以上的组构成(但组不一定都归结成群),群与群之间有明显的沉积间断或不整合。如青白口群就包括下马岭组、长龙山组和景儿峪组,岩性上构成一个大的沉积旋回,它的地层间都有沉积间断,标志着构造环境和沉积条件的显著改变。群也是地名加群进行表示,如登封群、泰山群等。3.1.2地层年代的确定一、沉积岩相对地质年代的确定地层的绝对年代可以根据岩石所含放射性元素及其衰变规律来确定。但在一般地质工作中,用的较多的是地层的相对年代,地层相对年代常用以下方法确定:1.地层层序律:沉积岩在形成过程中,自然的层序总是先沉积(时代老)的地层在下面,后沉积的地层在上面。沉积物的形成是由下而上一层一层的叠置起来的,先沉积的在下面,后沉积地在上面,沉积岩层这种正常的层序关系,反映了沉积历史的先后,具有下老上新的相对关系,称为地层层序律。地层层序律只能确定岩层的相对新老关系,而不能解决地层归属及不同地区地层时代对比问题。根据地层层序律,在沉积岩形成之后,如果没有经过激烈的构造变动,使地层倒转,则位于下面的地层时代较老,位于上面的地层时代相对较新。2.标准地层对比法:一般在同一地质时期,同一环境下形成的岩石,它们的矿物成分、结构和构造、岩石组合等特征都应该是相似的,因此我们就可以将未知地质年代的地层岩性特征,与已知地质年代的地层岩性特征进行对比,从而可以确定未知地层的地质年代,在进行对比时,既要本层岩石的岩性特征,又要对比与之相应的上下岩性组合的特征。岩性对比法是地质工作中常用的方法之一。一定区域内,同一时期形成的岩层特征基本一致。可以以岩石的组成、结构、构造等特点,作为岩层对比的基础但此方法具有一定的局限和不可靠性。3.层位接触关系对比法:地壳上升可以形成侵蚀面,然后下降又被新的沉积物所覆盖,这种埋藏的侵蚀面称为不整合面。上下岩层之间具有埋藏侵蚀面的这种接触关系,称为不整合接触。不整合接触就成为划分地层相对地质年代的一个重要依据。沉积岩的接触关系主要有以下三种:(1)角度不整合:埋藏侵蚀面将年轻的、新的、变形较轻的沉积岩同倾斜或褶皱的沉积岩分开,不整合面上下岩层之间有一角度差异,见图3-1。(2)平行不整合(假整合):上下两套岩层之间产状一致、互相平行,但在岩性时代、古生物特征上是不连续的,中间发生过沉积间断。(3)整合::上下两套岩层之间产状一致、互相平行,且在岩性时代、古生物特征上是连续的,没有发生过沉积间断。图3.1角度不整合4.生物层序法:地球上的生物,经历了由简单到复杂,由低级到高级的发展过程,而且生物的进化是不可逆的,也就说任何一种生物一经灭绝,在以后的演化过程中,绝对不再重复出现,同时生物演化的历史,又使生物不断适应生活环境的过程。在不同环境的地质历史时期,必定有不同的生物种属和生物群,所以地质年代越老的地层,保存的生物化石越低级简单,地质年代新的地层,保存的生物化石越高级复杂,称为生物层序律。利用生物层序律就可以确定地层时代的归属和不同地区地层时代的对比问题。根据生物层序律及一定种属的生物生活在一定的地质时代,同一时代的地层保存有相同或相近种属的生物化石。因此,可以认为在同一地区含有相同生物化石的地层,属同一时代。用古生物标准化石,就可以确定该地层形成的地质年代,如寒武系的珠角石、奥陶系的三叶虫、志留系的笔石,泥盆系的鱼类化石、大羽羊齿植物化石,侏罗—白垩系的恐龙化石等,都可作为该时期的标准化石。化石是确定地质年代的重要依据,不同地质年代中有不同的古生物化石,见图3-2、3-3。时代相同的地层中,可以找到相同的生物化石,利用岩层中所含的标准化石,就可以确定岩层的地质年代。图3.2鱼化石图3.3恐龙化石二、岩浆岩相对地质年代的确定岩浆岩的相对地质年代,是通过它与沉积岩的接触关系以及它本身的穿插构造来确定的。1.接触关系(1)侵入接触:岩浆侵入体侵入于沉积岩层之中,使围岩发生变质现象.说明岩浆侵入体的形成年代,晚于发生变质的沉积岩层的地质年代。(2)沉积接触:岩浆岩形成以后,经长期风化剥蚀,后来在侵蚀面上又有新的沉积。侵蚀面上部的沉积岩层无变质现象,而在沉积岩底部往往有岩浆岩组成的砾岩或岩浆岩风化剥蚀的痕迹,这说明岩浆岩的形成年代早于沉积岩的地质年代。2.穿插关系:穿插的岩浆岩侵入体(如岩株、岩脉和岩基等),总是比被它们所侵入的最新岩层还要年轻,而比不整合覆盖在它上面的最老岩层要老。若两个侵入岩接触,一般是年轻的侵入岩脉穿过较老的侵入岩。三、绝对地质年代的确定:用放射性同位素法3.2.岩层产状及岩层构造3.2.1岩层的产状基本概念岩层在地壳中的空间方位和产出状态称为岩层产状。它以用岩层面在空间的延伸方向和倾斜程度来确定,用走向、倾向和倾角表示,称为岩层产状要素,见图3-4岩层产状要素图。走向线:指岩层面与水平面的交线所指的方向,交线是一条直线(即AB),被称为走向线,它有两个方向,相差180°。走向:岩层层面与假想水平面交线的方位角,表示岩层在空间的水平延伸方向。倾向:垂直于走向顺倾斜面向下引出一条直线,此直线在水平面的投影的方位角,称岩层的倾向。表示岩层在空间的倾斜方向。倾角;岩层层面与水平面所夹的锐角,即为岩层的倾角。它表示岩层在空间倾斜角度的大小。图3-4岩层产状要素图由此可见,用岩层产状的三要素,能表达经过构造变动后的构造形态在空间的位置。3.2.2岩层产状的野外测定及表示法在野外通常使用地质罗盘来测量岩层产状的三要素,见图3-5。岩层产状的测量用地质罗盘仪进行测量,其形式多种多样,主要有长方形、方形及圆形。其工作原理是由磁针和刻度盘来确定地理方位;由测斜仪来测定倾斜度;由水准器来判定水平面;由瞄准器来对准被测物的准确位置。它的基本构造有:1、磁针:是长条状的两端尖锐的磁性体,一端指向磁北极,一端指向磁南极。其中绕有铜丝的一端指南。磁针的中心部位有一个刚玉(宝石)顶针,顶针的尖端将磁针托起,使其转动时减少磨擦,转动自如。2、水平刻度盘:在罗盘的上层边缘有一圆周形刻度盘。从0°至360°,呈反时针方向计数,其刻度精度为1°,在0°(或360°)、270°、180°的位置上,分别在底盘上标有N(北)W(西)S(南)90°位置上为E(东)被底盘水准器占据。由此,南北线及东西线将罗盘划分为四个象限,即0°~90°为北东(NE)象限,90°~180°为南东(SE)象限,180°~270°为南西(SW)象限,270°~360°为北西(NW)象限。3、底盘水准器:用以表示使用罗盘时,罗盘是否处于水平状态。只有当罗盘处于水平位置时,则水准气泡就居于圆形水准器的中心位置。4、瞄准器:包括瞄准板和瞄准准心。瞄准准心有二个,一个在瞄准板的顶端,一个在罗盘盖反光镜面的上沿,二个瞄准准心的连线与罗盘上的南北线(SN)方向完全吻合。瞄准器的使用原理是采用三点一直线。5、反光镜面:通过反光镜面,用来观察镜面中刻盘的刻度计数。反光镜面上的孔,是瞄准孔,不致因反光镜面而遮挡瞄准视线。6、测斜器:用来测量仰角或倾角的角度(或称倾斜度)。由三个部分组成,即垂直水准器(长形水平器)、刻度指示器和活动板手。垂直水准器