2018年苏州中考《第五讲:一次函数与反比例函数》专题复习含答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018年苏州中考数学专题辅导第五讲应用题(一次函数与反比例函数专题)选讲此部分内容包括:函数的应用(主要是一次函数与反比例函数),则属于中档题。真题再现:1.(2008年苏州•本题8分)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线4yx上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线yx上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由。2.(2010年苏州•本题8分)如图,四边形OABC是面积为4的正方形,函数kyx(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数kyx(x>0)的图象交于点E、F,求线段EF所在直线的解析式.3.(2014年•苏州•本题7分)如图,已知函数y=-12x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a2),过点P作x轴垂线,分别交函数y=-12x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.4.(2014年•苏州•8分)如图,已知函数y=kx(x0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=12AC时,求CE的长.5.(2015年苏州•本题满分8分)如图,已知函数kyx(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.6.(2016年苏州•本题满分8分)如图一次函数6ykx的图像与x轴交于点A,与反比例函数(0)myxx的图像交干点B(2,n).过点B作BCx轴于点P(34,1)n,P是该反比例函数图像上的一点,且∠PBC=∠ABC.求反比例函数和一次函数的表达式.7.(2017年苏州•本题满分8分)如图,在C中,CC,x轴,垂足为.反比例函数kyx(0x)的图像经过点C,交于点D.已知4,5C2.(1)若4,求k的值;(2)连接C,若DC,求C的长.8.(2017年南京市•本题满分3分)如图,已知点A是一次函数y=12x(x≥0)图像上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx(k)0)的图像过点B、C,若△OAB的面积为6,求△ABC的面积.9.(2017年南京市•本题满分8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=mx(x0)的图像交于点B(-2,n),过点B作BC⊥x轴于点C,点D(3-3n,1)是该反比例函数图像上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.10.(2017年无锡市•本题满分12分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.11.(2017年泰州市•本题满分12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)模拟训练:1.(2017年常熟市•本题满分8分)如图,点A、B分别在y轴和x轴上,BCAB(点C和点O在直线AB的两侧),点C的坐标为(4,n).过点C的反比例函数(0)myxx的图像交边AC于点1(,3)3Dn.(1)求反比例函数的表达式;(2)求点B的坐标.2.(2018年蔡老师预测•本题满分8分如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.3.(2017年张家港•本题满分8分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地1ykm和2ykm的地方,图中的线段OA、折线BCDE分别表示1y、2y与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距50km.4.(2017年苏州市区•本题满分8分)如图,在平面直角坐标系中,函数kyx(0x,k是常数)的图像经过(26)A,,(,)Bmn,其中2m.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,CB.(1)若ABD△的面积为3,求k的值和直线AB的解析式;(2)求证:DEBECEAE;(第25题)(3)若AD∥BC,求点B的坐标.5.(2017年昆山市•吴江区••本题满分7分)如图,在平面直角坐标系中,矩形OABC的对角线,OBAC相交于点D,且//,//BEACAEOB,(1)求证:四边形AEBD是菱形;(2)如果3,2OAOC,求出经过点E的反比例函数解析式.6.(2017年高新区•本题满分8分)如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.7.(2017年吴中区•本题满分8分)如图,一次函数3yx的图象与反比例kyx(k为常数,且0k)的图象交于(1,)Aa,B两点。(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PAPB的值最小,求满足条件的点P的坐标。8.(2017年相城区•本题满分8分)如图,在平面直角坐标系中有RtABCV,90A,ABAC,(2,0)A,(0,1)B.(1)求点C的坐标;(2)将ABCV沿x轴的正方向平移,在第一象限内B、C两点的对应点'B、'C正好落在某反比例函数图像上.请求出这个反比例函数和此时的直线''BC的解析式.9.(2017年立达中学总校胥江部•本题满分8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.10.(2017年太仓市•本题满分8分)如图,已知点A(−2,m+4),点B(6,m)在反比例函数kyx(0k)的图像上.(1)求m,k的值;(2)过点M(a,0)(0a)作x轴的垂线交直线AB于点P,交反比例函数kyx(0k)于点Q,若PQ=4QM,求实数a的值.11.(2018年蔡老师预测•本题满分8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3。(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.参考答案:真题再现:1.解:(1)CE⊥x轴于E,解方程组得,∴A(2,2),B(﹣2,﹣2),在等边△ABC中可求OA=2,则OC=OA=2,在Rt△OCE中,OE=CE=OC•sin45°=2,∴C(2,﹣2);(2)作AD⊥x轴于D,连AC、BC和OC,∵A(2,2),∴∠AOD=45°,AO=2,∵C在O的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC,又∵∠BAC=60°,∴△ABC为正三角形,∴AC=BC=AB=2AO=4,∴OC==2,由条件设教练船的速度为3m,A、B两船的速度都为4m,则教练船所用时间为,A、B两船所用时间均为=,∵=,=,∴>;∴教练船没有最先赶到.【点评】本题考查了直角坐标系中点的求法,根据点的坐标求两点之间距离的方法.解答本题时同学们要读懂题意,就不易出错.2.解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,∴点B坐标为(2,2),将x=2,y=2代入反比例解析式得:2=,∴k=2×2=4.(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,∴ON=OM=2AO=4,∴点E横坐标为4,点F纵坐标为4.∵点E、F在函数y=的图象上,∴当x=4时,y=1,即E(4,1),当y=4时,x=1,即F(1,4).设直线EF解析式为y=mx+n,将E、F两点坐标代入,得,∴m=﹣1,n=5.∴直线EF的解析式为y=﹣x+5.【点评】此题综合考查了反比例函数与一次函数的性质,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.要会熟练地运用待定系数法求函数解析式,这是基本的计算能力.3.解:(1)∵点M在直线y=x的图象上,且点M的横坐标为2,∴点M的坐标为(2,2),把M(2,2)代入y=﹣x+b得﹣1+b=2,解得b=3,∴一次函数的解析式为y=﹣x+3,把y=0代入y=﹣x+3得﹣x+3=0,解得x=6,∴A点坐标为(6,0);(2)把x=0代入y=﹣x+3得y=3,∴B点坐标为(0,3),∵CD=OB,∴CD=3,∵PC⊥x轴,∴C点坐标为(a,﹣a+3),D点坐标为(a,a)∴a﹣(﹣a+3)=3,∴a=4.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.4.解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功