相遇与追及问题课堂演练甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?提示:利用最小公倍数答案:720分钟(即12小时)课堂演练解放军抓敌人。敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?敌人已经跑了[10×(22-6)]千米,甲乙两地相距60千米。由此推知:追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人。课堂演练甲乙两列火车同时从东西两城相向开出,甲车每小时行49千米,乙车每小时行47千米,相遇时甲车比乙车多行36千米.求两城之间的路程。36÷(49-47)×(49+47)=1728(千米)课堂演练静水中,甲船速度是每小时22千米,乙船速度是每小时18千米,乙船先从某港开出顺水航行,2小时后甲船同方向开出,若水流速度为每小时4千米,求甲船几小时可以追上乙船?甲船顺水速度:22+4=26(千米/小时),乙船顺水速度:18+4=22(千米/小时),乙船先行路程:22×2=44(千米),甲船追上乙船时间:44÷(26-22)=11(小时)。答:甲船11小时可以追上乙船。课堂演练甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20千米,比甲车提前2小时到达。求A、B两地间的距离。乙车行驶了6小时到达B地,此时乙车比甲车多行了20×6=120千米,即甲车还要在2小时内行驶120千米,故甲的速度为60千米/时,A、B间距离为60×8=480千米。课堂演练甲、乙两人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?10÷5=2(米/秒)(甲比乙每秒多跑2米)2+4=6(秒)(第二种情况下甲追上乙时,乙跑的时间)6÷4=1.5(甲的速度是乙的1.5倍)2相当于0.5倍2÷0.5=4(米/秒)(1倍)乙的速度4+2=6(米/秒)甲的速度课堂演练客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。那么有120-20=100千米即为甲、乙的全长。1.环形场地的周长为1800米,甲、乙两人同时从同一地点出发相背而行,12分钟后相遇。如果每人每分钟多走25米,则相遇点与前次的相遇点相差33米。求原来甲、乙两人的速度?(甲的速度大于乙的速度)甲乙原来的速度和为1800÷12=150米/分,如果每人每分钟多走25米,则现在甲乙的速度和为150+25×2=200米/分;现在甲乙两人相遇需要时间为1800÷200=9分。甲比乙每分钟多走的路程前后均不变,看作1份;原来甲比乙多走的路程为12份,现在甲比乙多走的路程为9份。因为,前后相遇点相差33米;所以,甲现在比原来少走33米,乙现在比原来多走33米,甲的速度比乙的速度多33×2÷(12-9)=22米/分。所以,甲原来的速度为(150+22)=86米/分,乙原来的速度为150-86=64米/分。或甲原来的速度为(150-22)÷2=64米,乙原来的速度为150-64=86米/分。挑战一下挑战一下2.甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米.甲、乙从东镇,丙从西镇,同时相向出发,丙遇乙后10分钟再遇甲,求两镇相距多少米?由题干可知,丙先与乙相遇,再过10分钟与甲相遇,所以丙与乙相遇时,丙与甲的距离为甲、丙在10分钟内相向而行的路程之和:(20+25)*10=450(米),而这段路程正是从出发到乙、丙相遇这段时间里,甲、乙所行的路程之差.所以从出发到乙、丙相遇所用的时间为:450÷(22.5-20)=180(分).所以,东、西两镇的距离为:(25+22.5)*180=8550(米).挑战一下3.甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?提示:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280÷(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的平均值,即(80+72)÷2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+280÷2)÷(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.书山有路勤为径下课