基于Matlab的平面度误差最小区域法评定

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

TheMinimumZoneMethodofFlatnessErrorBasedonMatlabSHILi-xin,ZHUSi-hong(CollegeofEngineering,NanjingAgriculturalUniversity,Nanjing210031,China)Abstract:Theflatnessismostlyoneoftheformtolerance.Itisthesignificationtomeasureandassesstheflatnessinmeasuringofthegeo-metricparameter.Thispaperanalysesthelocalizationofcommonlyapproximatelyassessmethods,suchasthethreepointmethod,thecatercornermethodandtheleastsquaremethodandsoon.Accordingtothedefinitionoftheminimumzonemethod,themathematicalmodelispresentedforevaluatingflatnesserrorandestablishingdatumplaneequation.Matlabisusedtocalculateflatnesserror.Theresultshowthemethodissimpleandpractical.Keywords:minimumzonemethod;flatnesserror;MatlabIntroductionPlanegeometryisoneoftheimportantelementsthatconstitutepartoftheentity,suchasmachinetoolsplaneRails,tables,etc.,andoftenasadetectionplane,therefore,flatnesserrorThesizeoftheproductquality,theuseofbirthdaynoodleshaveacriticalimpact.NationalStandards.GB11337-89Definition:TheflatnesserroristheactualmeasuredtheiridealflatsurfaceTheamountofchangeinthesurface,andisideallyplaneshouldmeettheminimumconditions[1].FlatnessisOneofthemainprojectsshapetolerances,measurementandevaluationoftheerrorofthemeasurementgeometryHasanimportantsignificance.Currently,therearetwocommonmethodsassessflatnesserror:AnapproximateassessmentFixed,suchas:three-pointmethod,diagonalandleastsquares;theotheristhesmallestareaMethod.Evaluationoftheresultsofthree-pointmethodisnotunique,thereasonisselectedcephalometricpointsSoundassessmentresults.AlthoughtheassessmentresultsDiagonalunique,butassessmentresultsIsgreaterthanthespecifiedflatnesstolerance,cannotmakethejudgmentwhetherornotqualifiedflatness,depositInthegreatlimitations.Leastsquaresmethodissimple,longtimeintheacademictenSubpop,andwasincludedinthenationalstandardsBritainandtheUnitedStates,butthismethodisonlyavailableplaneApproximationerrorevaluationresults,andcannotguaranteeaminimumofthesolutions.ThestudytableDescription:flatnesserrorasassessedbytheleastsquaresmethodisgreaterthantheactualerrorof1.14Times,asassessedbytheflatnesserrorislessthantheminimumzonemethodactualerrorof1.1Times[2].BecauseoftheflatnesswithaminimumareaclosetotheidealmethodforevaluationoferrorerrorValue,andinaccordancewithISOstandards,foryearsmanyscholarsdedicatedtoresearchinthisarea.AnalysiscalculatedMinimumZoneEvaluationofflatnesserrorismorecomplex,peoplegotousethecomputertoreplacemanualcalculations,whilereducingthecomputationaleffort,butneedtouseVB,VC,Fortranandotherhigh-levellanguageprogramming,increasedprogrammingeffort,easilyError,andnotbeabletoachievetheoptimalsolving.Matlabisanumerical,symbolictransportCalculationandgraphicsprocessingandotherpowerfulfeaturesinoneofthescientificcomputingsoftware,hasastrong.Scientificcomputinganddataprocessingcapabilities,morethan600mathematicalfunctionsthatcanbeeasilyAchieveavarietyofcomputingfunctionsandtherobustnessandreliabilityisveryhigh.Duringtheoptimization.When,accordingtothemathematicalmodel,theoptimizationfunctioncallsMatlabtocompleteeachClassoperation.1MathematicalmodeltosetupMinimumZoneEvaluationbyflatnesserrortofindtheactualmeasuredessentiallyflat.Andtheshortestdistancebetweentwoparallelplanesideal,andthereforebelongtoseektominimizetheproblem.ThegeneralequationinspaceplaneCartesiancoordinatesystemasfollows:Ax+By+Cz+D=0Theequationcanbewrittenas:2Applicationexamples:Table1showsthemeasurementdataofacertainplane,themeasuringpointalongthex-axis,y-axisatintervalsof10cmuniformdistribution,eachdirectionhasfivemeasurementpoints,atotalof25measuringpoints.3ConclusionsFlatnesserrorevaluationmethod,thegeneralrecommendedminimumareamethod,usingMatlabrequiresonlyasimplematrixoperations,youcaneasilyfindtheequationassessthereferenceplane,andcanbeobtainedquicklyandaccuratelymeasuredsurfaceflatnesserror.Inmeasuringthelargerplane,measuringmorepoints,thismethodismoreapplicable(References)[1]郭新贵.面向高速切削的高速高精度插补技术研究[D].上海:上海交通大学,2002.[2]廖效果,刘又午.数控技术[M].武汉:湖北科学技术出版社,2000.[3]张莉彦.基于数据采样插补的加减速控制的研究[J].北京化工大学学报,2002,29(3):91-93.[4]谈勇.高速高精度雕铣机数控系统的研制[D].合肥:合肥工业大学,2004.[5]赵经政,等.机床的数字控制与计算机应用[M].北京:机械工业出版社,1984.[6]刘荣忠.数控技术[M].成都:成都科技大学出版社,1998

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功