对数函数的定义:函数xyalog)10(aa且叫做对数函数,定义域为),0(,值域为),(.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log()loglogaaaMNMN;(2)logloglogaaaMMNN;(3)loglog()naaMnMnR.(4)NnNanalog1log对数函数的图像及性质a>10<a<1图象性质定义域:(0,+∞)值域:R过点(1,0),即当x=1时,y=0)1,0(x时0y),1(x时0y)1,0(x时0y),1(x时0y在(0,+∞)上是增函数在(0,+∞)上是减函数32.521.510.5-0.5-1-1.5-2-2.5-11234567801132.521.510.5-0.5-1-1.5-2-2.5-112345678011例1.已知x=49时,不等式loga(x2–x–2)>loga(–x2+2x+3)成立,求使此不等式成立的x的取值范围.解:∵x=49使原不等式成立.∴loga[249)49(2]>loga)3492)49(1[2即loga1613>loga1639.而1613<1639.所以y=logax为减函数,故0<a<1.∴原不等式可化为322032022222xxxxxxxx,解得2513121xxxx或.故使不等式成立的x的取值范围是)25,2(例2.求证:函数f(x)=xx1log2在(0,1)上是增函数.解:设0<x1<x2<1,则f(x2)–f(x1)=212221loglog11xxxx21221(1)log(1)xxxx=.11log21122xxxx∵0<x1<x2<1,∴12xx>1,2111xx>1.则2112211logxxxx>0,∴f(x2)>f(x1).故函数f(x)在(0,1)上是增函数例3.已知f(x)=loga(a–ax)(a>1).(1)求f(x)的定义域和值域;(2)判证并证明f(x)的单调性.解:(1)由a>1,a–ax>0,而a>ax,则x<1.故f(x)的定义域为(-∞,1),而ax<a,可知0<a–ax<a,又a>1.则loga(a–ax)<lgaa=1.取f(x)<1,故函数f(x)的值域为(–∞,1).(2)设x1>x2>1,又a>1,∴1xa>2xa,∴1xaa<a-2xa,∴loga(a–1xa)<loga(a–2xa),即f(x1)<f(x2),故f(x)在(1,+∞)上为减函数.