数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)nnnnnnanSaaSnaaaaaaa数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4nnnnnnnnanSaaSnnSnSa数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.nnnnnanSSanNaaa已知数列的前项为,求求证数列是等比数列11211{},,.2nnnnaaaaann已知数列满足求练习1练习2练习3练习4112{},,,.31nnnnnaaaaan已知数列满足求111511{},,().632nnnnnaaaaa已知数列中,求111{}:1,{}.31nnnnnaaaaaa已知数列满足,求数列的通项公式练习8等比数列{}na的前n项和Sn=2n-1,则2232221naaaa练习9求和:5,55,555,5555,…,5(101)9n,…;练习5练习6练习7练习10求和:1111447(32)(31)nn练习11求和:111112123123n练习12设{}na是等差数列,{}nb是各项都为正数的等比数列,且111ab,3521ab,5313ab(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab的前n项和nS.答案练习1答案:练习2证明:(1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得:S(n+1)-S(n)=S(n)*(n+2)/nnS(n+1)-nS(n)=S(n)*(n+2)nS(n+1)=S(n)*(2n+2)S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0所以{S(n)/n}是等比数列(2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。所以S(n)/n=1*2^(n-1)=2^(n-1)即S(n)=n*2^(n-1)(*)代入a(n+1)=S(n)*(n+2)/n得a(n+1)=(n+2)*2^(n-1)(n属于N)即a(n)=(n+1)*2^(n-2)(n属于N且n1)又当n=1时上式也成立所以a(n)=(n+1)*2^(n-2)(n属于N)由(*)式得:S(n+1)=(n+1)*2^n=(n+1)*2^(n-2)*2^2=(n+1)*2^(n-2)*4对比以上两式可知:S(n+1)=4*a(n23421416,,39271114()233nnaaanan 234[()1]73n练习3答案:1)a1=S1=1/3(a1-1)a1=-1/2a2=S2-S1=1/3(a2-1)+1/23a2=a2-1+3/22a2=1/2a2=1/42)3Sn=an-13S(n-1)=a(n-1)-1相减:3an=an-a(n-1)2an=-a(n-1)an/a(n-1)=-1/2所以{an}为等比数列!练习4累加法,答案:练习5累乘法,答案:练习6待定系数法,答案:练习7倒数法,答案:练习8公式法,答案:413n练习9答案:555555555nnS个5(999999999)9n个235[(101)(101)(101)(101)]9n235505[10101010](101)9819nnnn.练习10,列项相消法,答案31nnnan123nan32113()2()23nnna132nan练习11,,列项相消法1/(1+2+3+……+n)=1/[n(n+1)/2]=2/[n(n+1)]所以原式=1+2/2*3+2/3*4+……+2/[n(n+1)]=1+2*[(1/2-1/3)+(1/3-1/4)+……+(1/n-1/(n+1)]=1+2*[1/2-1/(n+1)]=2-2/(n+1)练习12(错位相减法)答案:解:(Ⅰ)设na的公差为d,nb的公比为q,则依题意有0q且4212211413dqdq,,解得2d,2q.所以1(1)21nandn,112nnnbq.(Ⅱ)1212nnnanb.122135232112222nnnnnS,①3252321223222nnnnnS,②②-①得22122221222222nnnnS,221111212212222nnn1111212221212nnn12362nn.