11.设计要求使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来:测量温度范围−50℃~110℃。精度误差小于0.5℃。LED数码直读显示。本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。2设计方案与论证2.1设计方案通过本次CDIO利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度。2.2设计任务1、根据技术要求和现有开发环境,分析设计题目2、设计系统实现方案3、设计并绘制电路原理图4、画出功能模块的程序流程图5、使用汇编语言(或C语言)编写实现程序6、结合硬件调试、修改并完善程序;3系统的硬件设计及实现3.1系统各模块介绍3.1.1AT89C51芯片介绍(1)主要性能:2与MCS-51单片机产品兼容、8K字节的在系统可编程Flash存储器、一千次的擦写周期、全静态操作:0Hz~24MHz、三级加密程序存储器、三十二个可编程I/O口线、三个16位定时器/计数器以及八个中断源、全双工UART串行通道、低功耗空闲和掉电模式、掉电后中断可唤醒、看门狗定时器、双数据指针、掉电标识符。(2)功能特性:AT89C51是一种低功率消耗、性能较高CMOS8位微控制器。Flash能够允许程序存储器在系统可编程执行,亦适合于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89C52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。此外,AT89C52可降低到0Hz静态逻辑操作,支持2种软件可抉择节电模式。空闲模式时,CPU不再工作,却允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保留下来,振荡器被冻结,单片机所有工作都停止,直到下一个中断开始或者有硬件复位为止。图1AT89C51管脚分布3(3)管脚说明:VCC:供电电压,GND:接地。P0口:P0口作为一个8位漏级开路双向的I/O口,每脚可以吸纳8TTL门电流。当P1口的管脚第一次写1时,被视为输入高阻。P0可以用于外部程序或者数据存储器,它可以被定义为数据或者地址的第八位。在FIASH编程时,P0口被视为为原码输入口,当FIASH开始校验时,P0输出原码,此时P0外部一定被拉高。P1口:P1口是内部提供的8位上拉电阻的双向I/O口,P1口缓冲器能收到输出4TTL门电流。P1口管脚写入1后,可作为输入,其管脚被内部上拉为高电平,P1口被外部下拉为低电平的时候,将输出电流,这是由于内部上拉的原因。在FLASH编程和校验时,P1口被认为是第八位地址接收。P2口:P2口是一个8位内部上拉电阻的双向I/O口,P1口缓冲器可收到或者输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉为高电平,且作为输入。作为输入,P2口的管脚将被外部拉低的时侯,将输出电流。这是由于内部上拉的原因。P2口在用于外部程序存储器或者是16位地址外部数据存储器进行操作时,P2口输出地址作为高八位。在给出地址“1”时,它有内部上拉的优点,当对外部八位地址数据存储器进行读写操作时,P2口输出它的特殊功能寄存器上的内容。P2口在FLASH编程和校验的时候,接收信号作为高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,P3口缓冲器可接收输出4个TTL门电流。当P3口写入“1”后,被内部上拉为高电平,并且作用于输入。作为输入,因为外部下拉为低电平,P3口将输出电流(ILL),这是由于上拉的原因。P3口也可作为AT89C51的一些特殊功能口。P3口管脚备选功能:P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断0)P3.3/INT1(外部中断1)4P3.4T0(记时器0外部输入)P3.5T1(记时器1外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储空间时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期之中,此引脚作用于输入编程脉冲。在平时,ALE端以一定的频率周期输出正脉冲函数,此频率为振荡器频率的六分之一。因此它可用于对外部输出的脉冲或用于定时作用的目的。然而值得注意的是:每当用作外部数据存储的时候,它将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上复位。此时,ALE只是在执行MOVX,MOVC指令是ALE时才能够起作用。此外,该引脚被略微拉高。若是微处理器在外部执行状态ALE为禁止,那么置位无效。PSEN:外部程序存储器的选通信号。在由外部程序存储空间取指期间,每个机器周期是两次PSEN才有效。但在访问外部数据存储器时,这两次有效的PSEN信号都将不能够实现。EA/VPP:当EA保持低电平时,不管是否有内部的程序存储空间,那么在此期间外部程序存储空间(0000H-FFFFH)。注意当加密方式是1时,EA将内部定为RESET;当EA端保持高电平时,此间内部程序存储空间。在FLASH编程期间,此引脚也可以用作施加12V编程电源。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。(4)复位电路:MCS-52单片机复位电路是指单片机的初始化操作。单片机启运开始工作时,都需要先经过复位,其作用是使CPU和系统中其他配置器件处于一个确定的初始状态,并从这个状态开始执行命令。因而,复位是一个非常重要的操作方式。但单片机自己是不能自动执行复位的,必须配合恰当的外部电路才可以实现。5复位功能:复位电路的基本功能:系统上电时提供复位功能,一直到系统电源稳定后,去除复位信号。为保险起见,电源稳定后必须经一定的延时才可以撤销复位的信号,以防电源开关或电源插头分-合过程中导致的抖动而对复位功能产生影响。单片机的复位是由外部的复位电路来控制的。片内复位电路是通过复位引脚RST复位电路与一个斯密特触发器相连,斯密特触发器用来达到抑制噪声的目的,在每个机器周期它的输出由复位电路采样一次。复位电路通常运用上电自动复位以及按钮复位两种方式。单片机复位后的状态:单片机的复位操作使单片机达到初始化的状态,其中包括使得程序计数器PC=0000H,这说明程序从0000H地址开始运行。单片机工作后,片内RAM为任意值,运行中的复位操作不会更改片内RAM区中的数据,21个特殊功能寄存器在复位之后的数据为确定值,见表1。特殊功能寄存器初始状态特殊功能寄存器初始状态ABPSWSPDPLDPHP0—P3IPIE00H00H00H07H00H00HFFH***00000B0**00000BTMODTCONTH0TL0TH1TL1SBUFSCONPCON00H00H00H00H00H00H不定00H0********B表1寄存器复位后状态表PSW=00H,表示选寄存器0组为工作寄存器组;SP=07H,说明堆栈指针指向的是片内RAM07H字节存储空间,依据堆栈操作的先加后压原则,第一个被压入的数据写入到08H单元中;Po-P3=FFH,则代表向各端口线都已经写入1,此时,各端口的作用既可用于输入又可用于输出。IP=×××00000B,则表明各个中断源是等级低的优先级;IE=0××00000B,则表明各个中断均已经被关闭;6系统复位是任何微机系统执行的初始化步骤,使控制芯片整体回到默认的硬件状态下。由RESET引脚来控制的52单片机复位,此引脚与高电平相连超过24个振荡周期后,52单片机便可以进入芯片内部复位状态,并且可以在此状态下一直等待,一直至RESET引脚转为低电平以后,才校验EA引脚是高电平还是低电平,如果为高电平则运行芯片内部程序的代码,若为低电平则会执行外部程序的代码。(5)晶振电路:晶振是晶体振荡器的简称,在电路方面它可以等效成一个电容和一个电阻并联再串联一个电容的二端口网络,电学上这个电路有两个谐振点,以频率图2ADC0809管脚图的高低分把其中较高的频率称为并联谐振,较低的频率称为串联谐振。AT89C52单片机内部有一个高增益反相放大器,用于构成振荡器。引脚XTAL2和XTAL1分别是此放大器的输出端和输入端。作为反馈器件的片外晶体谐振器与该放大器一起构成一个自激振荡器。3.1.2ADC0809芯片ADC0809是用CMOS集成工艺制成的逐次比较型模数转换芯片。分辨率8位,转换时间100μs,输入电压范围为0~5V,增加某些外部电路后,输入模拟电压可为5V。该芯片内有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,无需附加逻辑接口电路。ADC0809芯片管脚如图二所示引脚名称及意义如下:7VIN+、VIN-:ADC0809的两模拟信号输出端,用以接收单极性、双极性和差模输入信号。DB7~DB0:A/D转换器数据输出端,该输出端具有三态特性,能与微机总线相接。AGND:模拟信号地。DGND:数字信号地。CLKIN:外电路提供时钟脉冲输入端。CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1.1/RC。CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动工作。WR:写信号输入,接收微机系统或其它数字系统控制芯片的启动输入端,低电平有效,当CS、WR同时为低电平时,启动转换。RD:读信号输入,低电平有效,当CS、RD同时为低电平时,可读取转换输出数据。INTR:转换结束输出信号,低电平有效。输出低电平表示本次转换已完成。该信号常作为向微机系统发出的中断请求信号。在使用时应注意以下几点:1.转换时序ADC0809控制信号的时序图如图所示,由图可见,各控制信号时序关系为:当CS与WR同为低电平时,A/D转换被启动而在WR上升沿后100μs模数完成转换,转换结果存入数据锁存器,同时INTR自动变为低电平,表示本次转换已结束。如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。2.零点和满刻度调节ADC0809的零点无需调整。其中Vmax是输入电压的最大值,Vmin是输入电压的最小值。当输入电压与VIN+值相当时,调整VREF/2端电压值是输出码为FEH或FFH。3.参考电压的调节在使用A/D转换器时,为保证其转换精度,要求输入电压满量程使用,如输入电压动态范围较小,则可调节参考电压VREF,以保证小信号输入时ADC0809芯片8位的转换精度。83.1.3PT100热敏电阻pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为Rt=AeB/t中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧