例1.1例1.2例1.35%90259025100009752复贴现率计息10000(1-5%)期初投资元,两年后获得元两年共获得利息:5%11025100001102510252复利计息10000(1+5%)投资元,两年后获得元两年共获得利息:23(5)10000(125%36%)12800(5)10000(15%(16%)13130AA单利复利)420(4)0.0815001742.9744niP84.693206.01100021122)2(0nndAA例1.4例1.5以第7年末为时间参照点,有以第8年末为时间参照点,有例1.6(1)(2)10100.051100010001648.72ee、%0605.611206.014121413)4(12)12(4)4(idi102000.050.05(1)1012100010001046.50tdttee、641.0641.061.06103.7435xx751.0641.06101.063.7435xx%124%35700)14000)4(43jijj()204.2%4.2061)1()(61)1(15000)1(6000)1(30002224舍去(由舍去负根iiiiii例1.7例1.8例1.9(12)1212%ln2(11%)25.812ln1.01nin时,(12)126%ln2(10.5%)211.612ln1.005nin时,(12)122%ln2(10.17%)234.712ln1.0017nin时,3602.072.0%2)1(1206.072.0%12)2(612.072.0%12)1(72.008.1ln08.02ln08.0)1ln(2ln)1ln(2ln2ln)1ln(2)1()12()6()12(niiniiniiiiiiiiininin原理:8323280.0920.090.06(7)1000(1)2000(1)200010001.02520001.02520005756Ajejeeeee(1)(2)例1.10(1)退休时个人帐户积累值计算(2)退休后每年可领取退休金例1.11例1.122464300000%465.01215RRa04.22621500465.130000004.226215%465.0606060%465.012060RsPVRaPV或者30303%1.031300300147000.03/1.03s30303%20303%203%203%300300(1.031)300959.3411.03ssXaXa0.255250.2Pa25842)(7000:24993)(7000:4946570007000%710000007.02007.007.01007.02007.010aaDaaCaBI:例1.13例1.14例1.15例1.16105%105%95%105%10105%105%95%1010001001000100(1)0.051.05112.58(2)0.05100010017733.68ssIssssIs将(2)式代入(1)式得=111111(1)()()1111(1)1(1)(1)nnnnnnnnnnnnnnnnnnnnanvnaIaDavviianvnvvvaivvaivaiaa67.16666603.0500005.008.0)08.105.1(15000lim)0(nnV2239394040(0)6000811.021.021.021(1.02)1.0213280.63(40)(0)1.0464720.78VvvvvvVV%(+)=4801-例题2.1解:(1)该项目的净现值为:按A所要求的收益率7%计算,净现值为0.5万元,大于零,可投资。按B所要求的收益率8%计算,净现值为–0.036小于零,不可投资(2)如果令净现值等于零,即可以计算出该项目的收益率为7.93%,大于A所要求的收益率(7%),可行小于B所要求的收益率(8%),不可行例题2.2Equatenetpresentvalues:-4000+2000v+4000v2=2000+4000v-xv2X=5460例题2.3解:价值方程为:100+132v2=230v因式分解得[(1+i)−1.1][(1+i)−1.2]=0解得i=10或i=20%例题2.4解:该题的资金净流入可列示如下:时间:012净流入:–10002150–1155假设收益率为i,则根据题意可建立下述方程:–1000+2150(1+I)–1–1155(1+i)–2=0上述方程两边同时乘以(1+i)2,并变形可得:5[20(1+i)−21][10(1+i)−11]=0所以20(1+i)–21=0或者10(1+i)–11=0从此可以求得两个不同的收益率:5%和10%。项目的净现值如图示。如果投资者要求5%以下的收益率,净现值小于零,项目不可行。如果投资者要求5~10%的收益率,净现值大于零,项目又是可行的!如果要求10%以上的收益率,净现值小于零,项目又不可行。例题2.5(1+0.09)5(1+i)5=(1+0.08)10⇒i=7.01%例题2.6解:(1)贷款在10年末的累积值为1000×1.0910=2367.36价值方程:1000×(1+i)10=2367.36i=9%(2)所有付款在第10年末的累积值为1000+90s=1000+90(13.8164)=2243.48价值方程:1000(1+i)10=2243.48i=8.42%(3)所有付款在第10年末的累积值为[1000/a10|0.09]s10|0.07=(155.82)(13.8164)=2152.88价值方程:1000(1+i)10=2152.85i=7.97%例题2.7Thefuturevalueattime5ofMary’sinvestmentsis1000s5/9%=5984.71First,wefindthebalanceinJohn’saccount:Hence,theinterestpaymentsJohngetsare:Theaccumulationoftheseinterestpaymentsattime5is:100(is)5/8%=(s:5/0.08-5)/0.05=1669.91ThetotalaccumulationofJohn’sinvestmentsis6669.91.•Hence,thedifferenceis6669.91−5984.71=685.2例题2.8Hence,theinterestpaymentsare:Balanceinjohn’saccountTime01000200030004000o1234John’sinterestpaymentTime0100200300400012341Balanceinthe1staccountTime1000200030004000500054321CashflowofinterestpaymentTime01002003004005432Thetotalaccumulationforbothaccountsattime5is6090=5000+100(is)3/0.06(1+k)+400K=10.51例题2.91211180110.42%180111212(1)121609.631561.89IiBiPaPPvorPI第次还款利息与本金分析例题2.10i=5%,j=3%时期支付贷款利息每期偿债基金储蓄偿债基金积累值未偿还贷款未尝还贷款净值00001000001000001500018835188351000008116525000188353823610000061764350001883558218100000417824500018835788001000002120055000188351000001000000i=5%,j=6%时期支付贷款利息每期偿债基金储蓄偿债基金积累值未偿还贷款未尝还贷款净值0000100000100000150001774017740100000822602500017740365441000006345635000177405647610000043524450001774077604100000223965500017740100000100000018180180.42%018018(2)18372172.9718()29260.33BPaIPBB第次还款后分析例题2.11例题2.12F(面值)=C(偿还值),故息票率r=修正息票率g。已知:F=C=1000,r=g=6%,i=5%,用溢价公式:债券价格超过了偿还值,因此是按溢价发行的,溢价金额为27.23元。下面分析投资者在期初多支出的这部分价款将在以后各期如何逐步获得补偿。投资者在第一年应该得到的利息收入为:1027.23×0.05=51.36(元)第一年实际得到的息票收入为1000×0.06=60(元)第一年的息票收入超过了利息收入,这个差额被称作溢价补偿金额。第一年的溢价补偿金额为60–51.36=8.64(元)从第一年初的帐面值中减去第一年的溢价补偿金额即得第二年初的帐面值为1027.23–8.64=1018.59(元)以后各年的帐面值和溢价补偿金额如下表所示例题2.135030303120303030604041303030103030505520305200100000011005/73/71/7021/163(1)50100ldllplllllqqllllqlTxdxle、、、