声波在水中的传播特性和水中目标探测的研究摘要:1912年4月19日,英国刚刚研制成功的一艘14000吨级的新邮轮“巨人号”,在加拿大纽芬兰岛南部海域被一座浮动冰山撞沉。结果1500余人遇难。在第一次世界大战期间,德国人利用新发明的U型潜艇,击沉了大量协约国的军舰和商船。两件重大事件促使科学家、发明家对声纳的研制和改进加快了进程。声纳的用途十分广泛。在军舰、潜艇、反潜飞机上安装声纳之后,可以准确确定敌方舰艇、鱼雷和水雷的方位。同时,它还能区别前方的目标是鲸鱼还是潜艇,是敌方潜艇还是我方潜艇呢。在民用方面,可以使轮船在黑夜和雾天航行时及时发现前方的船只或暗礁;可以告诉渔民哪儿有鱼群;还可以用来研究海洋地质,搜寻海下沉船,进行水下通信联系等等。关键词:声纳组成和工作原理简史现状发展趋势英文翻译:AcousticwavepropagationinthewaterandthewatertargetdetectionresearchName:LiuYiYaoTianUnits:CollegeofNanjingUniversityofTechnologyandEngineeringZijinAbstract:April19,1912,theUnitedKingdomhasjustbeensuccessfullydevelopedanew14,000-toncruisegiantinthesouthernislandofNewfoundland,Canada,wasaseaoffloatingicebergsank.ResultsMorethan1,500peopledied.DuringtheFirstWorldWar,theGermanuseofthenewinventionoftheU-shapedsubmarinetosinkalotofXiediguowarshipsandmerchantships.Twomajoreventspromptedscientists,inventorsofthesonarinthedevelopmentandexpeditetheprocessofimproving.Sonarusesverywide-ranging.Inwarships,submarines,anti-submarinesonarinstalledontheaircraft,canbeaccuratelydeterminedenemyships,torpedoesandminesposition.Atthesametime,itcanalsodistinguishbetweenthetargetisawhaleinfrontofthesubmarineorisourenemysubmarinesorsubmarineit.Inthecivilcontext,willenablevesselsnavigatinginthedarknessandfogatthetimefoundinfrontofthevesselorreefs;cantellfishermenwheretherearefish,butalsocanbeusedtostudythemarinegeologyandsearchundertheseashipwrecks,underwatercommunicationlinksetc..Keywords:sonarcompositionandworkingprinciplehistoryStatusQuoDevelopmentTrend正文:作为弹性波的声波在水中传播具有损耗小、传播距离较远的优点,所以声纳已成为海洋开发和研究中不可缺少和行之有效的探测设备.但根据海洋声学的基本特性,海水中声波的传播速度受海水的温度、盐度和水压等环境因素影响较大,这对声纳探测,特别是测深的影响非常大,它直接改变海水中声波传播轨迹:声速变化为正梯度时,水下声源发出的声线向海面弯曲;声速变化为负梯度时,声线向海底方向弯曲。线轨迹改变的大小程度受声速梯度分布影响很大。由于海洋介质的不均匀性和多变性导致声速分布规律非常复杂,所以声波在海洋中的传播规律不仅取决于海洋的边界条件,海水的温度、盐区分布,海水中含有成分变化等等,而且还受到海洋动力因素和时空变化的制约.这样声纳在进行水下探测时,有时会造成较大的定位和方向偏差;再者海洋环境中存在复杂的噪声,除了海洋介质本身运动的发声外,还包括大部分海洋生物发出的声音,对探测造成极大的干扰.这些干扰不仅覆盖了整个声波频段,而且波形从脉冲波到正弦波都有,其分布是无规律的.由于海洋中声波的长距离传播能力,各种噪声都会对声纳探测构成干扰,使之难以捕获和辨认目标,特别是小目标.另外,声波传输在通过大气-水界面对反射损耗大,在直接二维成像方面也存在难以克服的缺陷.目前正在研究的成像产纳只能利用阴影方式对目标轮廓进行粗略估算.所以利用其他手段(如电磁波)来弥补声纳探测的不足成为完善水下目标探测系统研究的重要课题,蓝绿光在水中的光谱透射使得光波成为水下探测的一种新手段。光波与声波相比.由于在水介质中的散射大,传播距离要短得多,但在其他方面弥补了声波的不足.首先,在水中光速受温度和盐度变化的影响较小,所以探测方向性好,定位较准确;同时根据电磁波成像的衍射理论,光波具有能直接二维强度成像、多光谱摄像以及图像分辨率高等特点,这对于自动、快速识别目标具有重要意义.特别是激光问世后,其亮度高、脉冲短、清晰度高等优点用于水下目标,特别是小目标,如水雷等的探测,可以获得声纳难以实现的成像、测距和定位效果;另外,激光的高亮度使得生物光和其他海洋光噪声均可以被有效滤除;激光的相干和偏振使制作两维空间滤波器成为可能,这种滤波器可用来提高图像衬比度及探测信噪比;作为系统载体方式来说,在空气一水界面传播时的高透过率和高清晰度也使得激光不仅在水下探测,而且在机载或星载(空对水)探测中都具有广泛的应用。被动式声纳(噪声声纳),主要由换能器基阵(由若干换能器以一定规律排列组合而成)、接收机、显示控制台和电源等组成。当水中、水面目标(潜艇、鱼雷、水面舰船等)在航行中,其推进器和其他机械运转产生的噪声,通过海水介质传播到声纳换能器基阵时,基阵将声波转换成电信号传送给接收机,经放大处理传送到显示控制台进行显示和提供听测定向(图1)。早期的噪声声纳搜索目标和测定目标方位,主要是转动换能器基阵对准目标,以最大定向法来完成;近代噪声声纳则由基阵和波束形成电路预成波束来自动完成。现代噪声声纳除完成对目标测向外,还能根据噪声目标的频谱特征等判明其性质和类型;噪声测距声纳还可对目标进行被动测距。主动式声纳(回声声纳),主要由换能器基阵、发射机、接收机、收发转换装置(用于收发合一的基阵)、终端显示设备、系统控制设备和电源等组成。在系统控制设备的控制下,发射机产生以某种形式调制的电信号,经收发转换装置送到换能器基阵,由换能器将其变换成声能向水中辐射;同时,信号的部分能量被耦合到接收机作为计时起始(距离零点)信号。当声波信号在传播途中遇到目标时,一部分声能被反射回换能器再转换成电信号,经收发转换装置送入接收机进行放大处理,送到终端显示设备供观察和听测(图2)。1490年,意大利人达·芬奇最早记述了把两端开口的长管插入水中听测远处航船的方法。后人把这种传声管称为“芬奇管”。在第一次世界大战中,人们把“芬奇管”发展成为由两组多管组成的水中听音器,以双耳效应法测定目标方位,其测向精度达±0.5度,但距离很近。有一种称为“鳗”的多管线列阵系统,可拖曳在船尾,供任何一种舰船拖带和测听。据统计,在这次大战中,约有3000艘舰艇装备此类空气管水听器,以对付水下航行的潜艇。19世纪末,发现了声电转换材料;20世纪初,又发明了真空管,成为声纳发展的基础。1916年,法国物理学家P.郎之万利用电容发射器和炭粒微音器开始作回声声纳实验;1918年,他用石英换能器和真空管放大器组成的探测器,收到了潜艇的回波,探测距离达1500米,这是最早出现的实验性近代回声声纳。与此同时,英国由R.W.博伊尔领导的名为“ASDIC”的研究小组,利用石英换能器和真空管放大器进行对潜艇探测的研究也取得了成功。1935年前后,比较符合实战要求的声纳开始投入生产,到第二次世界大战爆发时,已有许多舰艇装备了声纳。据统计,在这次大战期间被击沉的潜艇中,有60%是由声纳发现的。从20世纪50年代中期起,由于核动力潜艇的发展和水中武器性能的提高,电子技术、水声工程和水声物理学方面出现了新的研究成果,使声纳的发展进入现代化阶段。其主要标志是:①比较普遍地采用低声频、大功率和信号数字处理技术,综合利用声波在水中传播的新途径,采取降低舰艇噪声等措施,使声纳的探测距离比40~50年代提高了10~30倍。②利用多元式基阵和数字多波束电子扫描技术,实现了对目标水平全向或三维空间的快速扫描搜索,并具有同时搜索跟踪多个目标的能力和较高的定位精度(方位精度±0.25°~±1°,距离精度±1%~±5%,俯抑精度小于±1°)。③采用识别声纳或通信声纳的编码识别装置,解决了对水下目标的主动识别,并正在发展被动识别技术。④拖曳式声纳(变深声纳)有了较大的发展,使水面反潜舰艇在恶劣海况和不良水声传播条件下,能有效地实施对潜搜索和攻击。⑤采用被动式噪声测距,提高了潜艇隐蔽攻击的能力。⑥利用数字计算机技术和系统工程学的研究成果,单功能声纳已发展为多功能或综合性的声纳系统,使基阵得到综合利用并实现多部声纳的综合控制或集中操纵。⑦声纳同携载平台的其他传感探测设备、水中武器、导航等系统紧密结合,提高了舰艇、飞机对水中目标搜索识别和攻击的效能;同时,还发展了专用于探测水雷、水声侦察和干扰、对鱼雷警戒和诱骗的水声设备。发展镶贴式基阵声纳、拖曳线列阵声纳、光纤水听器和光学声纳,研究水声信号处理新技术,进一步降低舰艇噪声和加强对各类水声信道的主动利用。利用数字计算机先进技术和器件,进一步向全数字化发展,将很快出现第四代、第五代数字式声纳。进一步提高声纳对目标的搜索、识别、跟踪、处理能力和对海洋环境的适应能力,提高设备的可靠性、可维修性和管理操作的自动化程度,以更有效地保障潜艇和反潜兵力的战斗活动。作为一种新兴的技术手段,激光测距在水下目标探测中发挥越来越重要的作用,它与声纳探测互相补充,从空中到水面、到深水,从近距离到远距离,从估测到准确定位、直接成像,直到自动识别目标等,形成一种无缝式水下目标的探测能力.目前,一些发达国家如美国、加拿大、澳大利亚、瑞典、意大利、日本和法国都建立了各自的水下光电探测研究系统.自20世纪90年代以来,一些激光水下探测系统,如美国卡曼航空公司的MagicLantern、美国西屋电器总公司的SM2000以及加拿大LUCIE等,越来越多地被用于军事和民用领域。