高等数学(同济第六版)上册-期末试卷及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共6页高等数学(同济第六版)上册-期末试卷及答案一、填空题1.xxexx2sin2coslim30.232.曲线xxey的拐点是.)2,2(2e3.设)(xf在0x处可导且,0)0(f则xxfx)(lim0.)0(f4.曲线xxy22cos1在)21,2(处的切线方程为.1yx5.曲线122xxy有垂直渐近线和水平渐近线.1x,1y6.设)(uf可导,)]([sin2xefy,则dy.dxeefefxxx)()]([2sin7.dxex40.)1(22e8.若3)(0xf,则hhxfhxfh)3()(lim000.129.若dxxp1收敛,则p的范围是.1p10.1)1232(limxxxx.e11.设cxFdxxf)()(,则dxxf)2(.cxF)2(2112.设)(xf的一个原函数是xxln,则dxxxf)(.cxxxln242213.设0,0,)(2xxxxxf,则11)(dxxf.6114.过点)3,1(且切线斜率为x2的曲线方程为.12xy15.已知函数0,0,sin)(xaxxxxf,则当x时,函数)(xf是无穷小;当a时,函数)(xf在0x处连续,否则0x为函数的第类间断点.1,一16.已知cxFdxxf)()(,则dxxfx)(arcsin112.cxF)(arcsin17.当0x时,1)1(312ax与xcos1是等价无穷小,则a.23第2页共6页18.0,0,sin)(303xaxxdtttxfx是连续函数,则a.119.)(xf在]1,0[上连续,且120(1)0,[()]1ffxdx,则10)()(dxxfxxf.21提示:10)()(dxxfxxf1010210))(()()()()(xxfdxfxxfxdfxxf1010210)()()()]()()[(dxxfxxfdxxfdxxfxxfxf,移项便得.20.dxxexxx02)(,则)1(.)1(.)1(21e,e21.xdxxdf1)(2,则)(xf.x21提示:22221)(12)(xxfxxxf22.曲线)(xfy在点))2(,2(f处的切线平行于直线13xy,则)2(f.323.设xxfarctan)(,且,00xxxfxxfx)()(lim000.)1(2100xx24.33ln2xxy的水平渐近线是.3y25.函数xxy的导数为.)1(lnxxx26.dxxex02.2127.dxxxxx)1sin(2211.128.广义积分dxx131.2129.x)x(f的积分曲线中过)21,1(的曲线的方程______.2xy=1230.设S为曲线xxyln与exx,1及x轴所围成的面积,则s.)1(412e31.dxxf)2(.cxf)2(2132.曲线)1ln(xey的渐近线为.exxy1,0,133.曲线2xy与xy2所围图形绕y轴旋转一周所成的旋转体体积.10334.设022x1,x0f(x)0,x0,f(x1)dxx,x0=.56第3页共6页二、选择题1.设21cos,01(),10xxfxxxx,在0x处()A.A连续,不可导.B连续,可导.C可导,导数不连续.D为间断点2.曲线xysin2在0x处的切线与x轴正方向的夹角为()B2.A4.B0.C1.D3.若032ba,则0)(23cbxaxxxf()B.A无实根.B有唯一实根.C三个单实根.D重根4.函数)(xf在0xx处取得极大值,则()D0)(.0xfA0)(.0xfB.C0)(0xf0)(,0xf.D0)(0xf或不存在5.设)(xf的导函数为xsin,则)(xf的一个原函数为()DxAsin1.xxBsin.xCcos1.xxDsin.6.设ttfcos)(ln,则dttftft)()(()ActttAsincos.ctttBcossin.ctttC)sin(cos.cttDsin.7.设)(xf连续,202)()(xdttfxF,则)(xF()C)(.4xfA)(.42xfxB)(2.4xxfC)(2.2xxfD8.下列广义积分收敛的是()CdxxxAeln.dxxxBeln1.dxxxCe2)(ln1.dxxxDeln1.9.广义积分0xxeedx()C2.A.B4.C.D发散10.下列函数中在区间]3,0[上不满足拉格朗日定理条件的是()C12.2xxA)1cos(.xB)1(.22xxC)1ln(.xC11.求由曲线xyln,直线)0(ln,ln,0abbyayx所围图形的面积为()CbaA.22.abBabC.abD.12.已知1)()()(lim2axafxfax,则在ax处()BA.)(xf导数存在且0)(afB.)(xf取极大值C.)(xf取极小值D.)(xf导数不存在第4页共6页三、计算题1.)1sincosln(lim220xxxxx212.41cos0lnlimxtdttxx813.)11(lim22xxx04.xxx10)(coslim21e5.2tan)1(lim1xxx26.求xxxxxln1lim01解1原式1limlim1ln)ln1(lim0ln000eexxxxxxxxxxx,解2原式lnln001lim=1,limln0,1~ln,0lnxxxxxxexxexxxxx()7.设)(xf为连续函数,计算xaaxdttfaxx)(lim2)(2afa8.sin(ln)xdx[sin(ln)cos(ln)]2xxxc9.dxx02cos12210.dxxaxa2202416a11.设xxycos)(sin,求y.]sincossinlnsin[)(sin2cosxxxxxx12.设0cos20ln0xyttdtdte,求dy.dxxx2cos213.dxxxx84132cxxx22arctan2584ln23214.设)1()(3tefytfx,其中f可导,且0)0(f,求0tdxdy.315.dxxx042sinsin提示:原式1cossincossin0022dxxxdxxx16.dxx202)1(1发散17.dxex2ln01)41(218.12xxdxcx1arccos19.xdxx4223cos)4(2320.dxxx3ln21ln(3)2xc21.dxexx22ln0311ln24222.)1(2xxeedxarctanxxeec23.设x1)e(fx,求)x(f.lnxxc24.1x1xdx33221[(1)(1)]3xxc第5页共6页25.)x1(xdx10101lnln110xxc26.已知)(xf的一个原函数为lnx)sinx1(,求dx)x(fx.cosln1sin(1sin)lnxxxxxx27.dxx1x1xln211ln(1)21xxxcx28.dxx)1x(ln2ln(1)44arctanxxxxc29.dxxaxa0221430.设)(xf在]1,0[上连续,单调减且取正值,证:对于满足10的任何,有0f(x)dxf(x)dx.000()()()()()()()()fxdxfxdxfxdxfxdxfxdxfxdxfxdx提示:31.2060sin1lim3xtxxtetdtxe四、解答题1.求函数xexy的单调区间、极值及曲线的凹凸区间、拐点、渐近线.2.设1sin,0()200xxfxxx,或,求xdttfx0)()(在),(内的表达式.0001()()(cos1),021,xxxftdtxxx,3.设)(xf在),(内连续,证明()()()()xadxtftdtfxfadx.4.设20,,0,2:;0,2,,2:2221aaxyxyDyxaxxyD(1)试求1D绕x轴旋转得旋转体体积1V;2D绕y轴旋转得旋转体体积2V;(2)问当a为何值时1V2V得最大值?并求该最值.)32(5451aV,42aV,1a,1(V5129)max2V5.已知xxxf22tan2cos)(sin,求)(xf.提示:uuuufxxxxf121)(sin1sinsin21)(sin2222,cxxxf1ln)(2第6页共6页6.设cy与22xxy相交于第一象限(如图).(1)求使得Ⅰ与Ⅱ两区域面积相等的常数c;(2)在(1)的情况下,求区域I绕x轴旋转的旋转体体积.提示:IIIIIIIIIIIIssss,202031)2(bbcdxxxcdxbb,又22bbc,43,23cb,23,21243212xxxxyy,24041V.7.设直线baxy与直线1,0xx及0y所围成的梯形面积为A,求ba,,使这块区域绕x轴旋转所得体积最小.)0,0(ba提示:21220()(),3aVaxbdxabb10()2aAaxbdxb,Aba,0时,体积最小.8.证明011302xxdxx在区间)1,0(内有唯一的实根.提示:令0)1()0(113)(02FFxdxxxFx,再证唯一性.9.求dte)t2()x(f2x0t的最值.21,1e最小值为最大值为10.0,xdt,t1lnt)x(fx1求)x1(f)x(f.21(ln)2x11.证明211lim21xxx.分析当x1时|f(x)A||211|2xx|x1|12.证明01limxx.分析||1|01||)(|xxAxf0要使|f(x)A|只要1||x.13.当1x时,将下列各量与无穷小量1x进行比较.(1);233xx(2)ln;x(3).11sin)1(xx(1)233xx是比1x较高阶的无穷小量;(2)lnx是关于1x的等价无穷小量;(3)11sin)1(xx与1x不能比较.111sin)1(lim1xxxx11sinlim1xx不存在.所以,11sin)1(xx与1x不能比较.IYX0CIIIIII(b,c)

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功