1※高等数学上册期末复习一.填空题1.xxexx2sin2coslim30232.曲线xxey的拐点是)2,2(2e3.设)(xf在0x处可导且,0)0(f则xxfx)(lim0)0(f4.曲线xxy22cos1在)21,2(处的切线方程为1yx5.曲线122xxy有垂直渐近线1x和水平渐近线1y6.设)(uf可导,)]([sin2xefy,则dydxeefefxxx)()]([2sin#7.dxex40)1(22e8.若3)(0xf,则hhxfhxfh)3()(lim000129.若dxxp1收敛,则p的范围是1p#10.1)1232(limxxxxe11.设cxFdxxf)()(,则dxxf)2(cxF)2(21#12.设)(xf的一个原函数是xxln,则dxxxf)(cxxxln242213.设0,0,)(2xxxxxf,则11)(dxxf61#14.过点)3,1(且切线斜率为x2的曲线方程为12xy15.已知函数0,0,sin)(xaxxxxf,则当x时,函数)(xf是无穷小;当a1时,函数)(xf在0x处连续,否则0x为函数的第(一)类间断点。16.已知cxFdxxf)()(,则dxxfx)(arcsin112cxF)(arcsin217.当0x时,1)1(312ax与xcos1是等价无穷小,则a23#18.0,0,sin)(303xaxxdtttxfx是连续函数,则a119.)(xf在]1,0[上连续,且1)]([,0)1(102dxxff,则10)()(dxxfxxf21提示:10)()(dxxfxxf1010210))(()()()()(xxfdxfxxfxdfxxf1010210)()()()]()()[(dxxfxxfdxxfdxxfxxfxf,移项便得。#20.dxxexxx02)(,则)1()1(21e,)1(e21.xdxxdf1)(2,则)(xfx21提示:22221)(12)(xxfxxxf22.曲线)(xfy在点))2(,2(f处的切线平行于直线13xy,则)2(f3#23.设xxfarctan)(,则,00xxxfxxfx)()(lim000)1(2100xx24.33ln2xxy的水平渐近线是3y25.函数xxy的导数为)1(lnxxx26.dxxex0221#27.dxxxxx)1sin(2211128.广义积分dxx1312129.x)x(f的积分曲线中过)21,1(的那条曲线的方程______12x2#30.设s为曲线xxyln与exx,1及x轴所围成的面积,则s)1(412e31.dxxf)2(cxf)2(21332.曲线)1ln(xey的全部渐近线为exxy1,0,1#33.曲线2xy与xy2所围图形绕y轴旋转一周所成的旋转体体积10334.点)1,1,0(到平面0222zyx的距离为3535.设向量kjibkjia24,2,则当10时,ba;当ba//,2。本题不作要求36.空间曲线)(31222222yxzzyx在xoy平面上的投影曲线方程为04122zyx37.设3),(,2,5baba,则ba3219238.设向量}5,4,3{},2,1,2{ba,则a在b上的投影为2239.已知向量kjima5和向量knjib3共线,则mn,155140.设平行四边形二边为向量}3,1,2{},1,3,1{ba,则其面积为10341.设点142),5,0,4(BAA,向量BA的方向余弦为141cos,143cos,142cos,则B点坐标为)1,2,10(本题不作要求42.曲线0122322zyx绕y轴旋转一周所得的旋转曲面方程为12233222yzx43.设,3,2ba且ba//,则baba,6044.设022dx)1x(f,0x,x0x,00x,1x)x(f=56#45.)x(,dt)tx(sin)x(x0sinx4二.选择题1.设2005)1(limnnnn,则,的值为()C20051,2004.A20052004,20051.B20051,20052004.C20051,20052004.D#2.设01,10,1cos)(2xxxxxxf,在0x处()A.A连续,不可导.B连续,可导.C可导,导数不连续.D为间断点3.曲线xysin2在0x处的切线与x轴正方向的夹角为()B2.A4.B0.C1.D4.设)(xf在]1,0[上连续,)1,0(内可导,0)1(,1)0(ff,则至少存在一点)1,0(,有A()(),FxxfxRolle设利用定理)()(.ffA.B)()(ff.C)()(ff.D)()(ff#5.若032ba,则0)(23cbxaxxxf()B.A无实根.B有唯一实根.C三个单实根.D重根#6.函数)(xf在0xx处取得极大值,则()D0)(.0xfA0)(.0xfB.C0)(0xf0)(,0xf.D0)(0xf或不存在7.设)(xf的导函数为xsin,则)(xf的一个原函数为()DxAsin1.xxBsin.xCcos1.xxDsin.#8.设ttfcos)(ln,则dttftft)()(()ActttAsincos.ctttBcossin.ctttC)sin(cos.cttDsin.9.设)(xf连续,202)()(xdttfxF,则)(xF()C)(.4xfA)(.42xfxB)(2.4xxfC)(2.2xxfD10.下列广义积分收敛的是()CdxxxAeln.dxxxBeln1.dxxxCe2)(ln1.dxxxDeln1.5#110xxeedx()C2.A.B4.C.D发散12.下列函数中在区间]3,0[上不满足拉格朗日定理条件的是()C12.2xxA)1cos(.xB)1(.22xxC)1ln(.xC13.求由曲线xyln,直线)0(ln,ln,0abbyayx所围图形的面积为()CbaA.22.abBabC.abD.#14.若cedxexfxx11)(,则)(xf()BxA1.21.xBxC1.21.xD15.点)1,2,3(M关于坐标原点的对称点是()A)1,2,3.(A)1,2,3.(B)1,2,3.(C)1,2,3.(D16.向量ba与向量a的位置关系是()C.A共面.B平行.C垂直.D斜交17.设平面方程为0DCzAx,其中DCA,,均不为零,则平面()B.A平行于x轴.B平行于y轴.C经过x轴.D经过y轴18.设直线方程为00221111DyBDzCyBxA且0,,,,,221111DBDCBA,则直线()C.A过原点.B平行于x轴.C垂直于y轴.D平行于z轴19.直线37423zyx和平面3224zyx的位置关系为()C.A斜交.B垂直.C平行.D直线在平面上20.已知1)()()(lim2axafxfax,则在ax处(B)A.)(xf导数存在且0)(afB.)(xf取极大值C.)(xf取极小值D.)(xf导数不存在6三.计算题#1.)1sincosln(lim220xxxxx21#2.41cos0lnlimxtdttxx813.)11(lim22xxx04.xxx10)(coslim21e#5.2tan)1(lim1xxx26.求xxxxxln1lim0=1解:一)原式1limlim1ln)ln1(lim0ln000eexxxxxxxxxxx,二)原式0,ln~1,0lnlim,ln1limln0ln0xxxexxxxexxxxxx1。7.设)(xf为连续函数,计算xaaxdttfaxx)(lim2)(2afa8.dxx)sin(lncxxx)]cos(ln)[sin(ln29.dxx02cos12210.dxxaxa2202416a11.设xxycos)(sin,求y]sincossinlnsin[)(sin2cosxxxxxx#12.设0cos20ln0xyttdtdte,求dydxxx2cos213.设)(xf在]1,0[上连续,求积分dxxxfxxf]sin)(coscos)(cos[222提示:原式2222)(cossincos)(cosxxdfxdxxf222222cos)(cos)(cossincos)(cosxdxxfxxfxdxxf)0(2f14.dxxxx84132cxxx22arctan2584ln23215.设)1()(3tefytfx,其中f可导,且0)0(f,求0tdxdy37#16.dxxx232)1(arcsincxxxx221ln1arcsin17.dxxx042sinsin提示:原式1cossincossin0022dxxxdxxx18.dxx202)1(1发散19.dxex2ln01)41(220.12xxdxcx1arccos21.xdxx4223cos)4(2322.dxxx3ln21ln(3)2xc23.dxexx22ln0311ln242#24.)1(2xxeedxarctanxxeec25.dx2x12x126.设x1)e(fx,求)x(flnxxc27.dxcosxx353331sincos3xxxc28.dxx1xarcsinx222arcsin1lnxxxc29.1x1xdx33221[(1)(1)]3xxc#30.)x1(xdx10101lnln110xxc#31.已知)(xf的一个原函数为lnx)sinx1(,求dx)x(fxcosln1sin(1sin)lnxxxxxx32.dxx1x1xln211ln(1)21xxxcx#33.dxx)1x(ln2ln(1)44arctanxxxxc#34.dxeeexxx20cossinsin235.dxxaxa02214本题不作要求36.已知)x(为连续函数,令80x,00x,)x1(lndt]du)u()1t[()x(f2x0t02试讨论)(xf在0x处的连续性与可微性。连续,可微#37.设)(xf在]1,0[上可导,且满足210dx)x(xf2)1(f,证必存在一点)1,0(,使)(f)(f。提示:利用积分中值定理和Rolle定理#38.设)(xf在]1,0[上连续,单调减且取正值,证:对于满足10的任何,有dx)x(fdx)x(f0。0