注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。(第1页)复变函数与积分变换参考答案及评分标准一、单项选择题。(每小题3分,共15分)1、B2、D3、A4、B5、C二、填空题。(每小题3分,共15分)6、0,13i7、28、09、1210、21(2)ss.三、计算下列积分。(本大题共4小题,每小题6分,共18分)11、设C为正向圆周2z,计算积分dzizzzIC))(9(2.解:dzizzzIC))(9(2229ziziz····································(4分)5·····················································(6分)12、设C为正向圆周2z,计算积分dzzzIC1252.解:由于252()1zfzz有两个一级极点1,-1,而这两个极点都在2z内所以2[(),1][(),1]IiResfzResfz································(2分)由规则I,得21523[(),1]lim(1)12zzResfzzz215277[(),1]lim(1)122zzResfzzz因此,372()1022Iii················(6分)13、利用留数计算积分dxxxI4cos21和dxxxI4sin22.注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。(第2页)解:由于函数2()4izefzz在上半平面内只有一个极点2zi···························(1分)故22e[(),2]4ixedxiRsfzix··························(3分)222lim(2)4izzieiziz22242eiie················································································(5分)所以,122cos42xIdxxe,22sin04xIdxx·······················(6分)四、解答题。(本大题共3小题,每题6分,共18分)14、已知调和函数22uxyxy,求解析函数()fzuiv使()1fii.解:由C-R条件,有2vuyxxy,2vuxyyx················(1分)则()(2)(2)uvfzixyiyxxx2()()(2)xyiixyiiz·····························(3分)∴2()()(2)2zfzfzdziC·························(5分)又∵()1fii∴2iC故2()(1)22iifzz································(6分)15、求函数f(z)=)1(12zez的全部孤立奇点.若为极点,则指出其级数.解:0z及方程10ze的根2(0,1,2,)kzikk,均为函数的奇点··········(3分)又(1)|0,2kkzzzzkeezi为1ze的一级零点,且当0k时00z。这样0z为函数2(1)zze的三级零点。····································(5分)故0z为三级极点,2(0,1,2,)kzikk为一级极点。·················(6分)16、设C为正向圆周1,3sin2()()Cfzdz(1z),求)(zf.注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。(第3页)解:3sin2()()Cfzdz2(sin2)|2!zi··············(3分)(4sin2)|zi4sin2iz··························(5分)()8cos2fziz······························(6分)五、(本大题12分)17、将)1(1)(2zzzzf在圆环域(1)10z;(2)z1内展开成洛朗级数.解:当10z时22112(1)(1)zzzzzz212(1)1zz·················(3分)201(12)nnzz12012nnzz···························(6分)当z1时,1||1z22112111(1)1zzzzzz····························(9分)201211()nnzzz230112nnzz···················(12分)六、(本大题共3小题,第18、19题各7分,第20题8分,共22分)18、求函数)1(1)(2sssF的Laplace逆变换.解:21()(1)sFsss···················(3分)故()1cos0Fttt··········19、若)(FF)]([tf,利用Fourier变换的性质,求函数)()3()(tfttg的Fourier变换.解:由线性性质及象函数的微分性质,有F[()]ftF[(3)()]tftF[()]3tftF[()]ft·······················注:1、教师命题时题目之间不留空白;2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。(第4页)1()3()dFFjd()3()dFjFd············20、利用Laplace变换,求解微分积分方程:tdtyty0)cos()()(,1)0(y.解:原方程可写为()cos()yttyt,·············两边取Laplace变换,2()()11sYssYss,即233111()sYssss,························从而方程的解为21()12ytt.·······················