1南华大学船山学院2010—2011学年第一学期《高等数学A》考试试卷一.填空题(本题共5小题,每小题4分,共20分)1.设0x1x0xef(x)x,则f(x)的一个原函数是.2.曲线12x11y与x轴、y轴和直线4x所围成的面积是.3.已知曲线f(x)y上的任一点f(x))(x,的切线斜率是2x41,而且曲线经过定点(2,0),则曲线方程.4.1xx12x4xf(x)234在R上的零点有个.5.已知(1)''f存在,且1xdx)f(elim3x02x0x,则(1)''f.二.选择题(本题共5小题,每小题4分,共20分)1.已知F(x)具有二阶连续导数(x)'F',则下面正确的是()A.F(x)dF(x)B.1]dx(x)'[F'x]dx(x)[F'dC.CF(x)(x)dF'D.C(x)F'F(x)(x)]dx'F'(x)[F'2.1-n1ini2nen2lim()A.20xdxe2B.10x2dxe2C.20x2dxeD.10x2dxe3.已知F(x)的一阶导数(x)F'在R上连续,且0F(0),则0x(t)dtxF'd()A.(x)dxxF'B.(x)dxxF'C.(x)dx]xF'[F(x)D.(x)]dxxF'[F(x)4.设f(x)的导数在x=a处连续,又xa()lim1fxxa,则()2A.x=a是f(x)的极小值点B.x=a是f(x)的极大值点C.(a,f(a))是曲线y=f(x)的拐点D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点。5.设0x1x0xef(x)sinx,那么x1f(t)dtF(x)在点0x处()A.其连续性无法判定。B.是可导的。C.是连续的,但不可导。D.是不连续的。三.计算题(本题共6小题,共38分)1.求3)1(x1x1)(xx1)sin(xelim3。(6分)2.求抛物线22yax的曲率半径。(6分)3.求函数x9)3x(xf(x)2的极值和拐点。(6分)4.已知函数0x2x2x10xx)2x)(1(11f(x)22,求20x)dxf(1。(6分)5.求1101xxdx。(7分)6.设f(x)可导,0f(0),若10102f(x)dx2xxf(x)f(tx)dtR)x(,求f(x)。(7分)四.证明题(22分)1.证明:当]2[0,x时,x21cosx。(6分)2.设f(x)在[1,2]上连续,在(1,2)内可导,且0f(2),证明:至少存在一点(1,2),使得0)f()ln('f。(8分)3.设f(x)在)[0,上连续且单调减少,试证明对任何0ab,皆有:bab0a0]f(x)dxaf(x)dxb[21xf(x)dx。(8分)3《高等数学A》考试试卷答案一.填空题(本题共5小题,每小题4分,共20分)1.0x1xx210xeF(x)2x2.2ln23.82xarctan21f(x)4.25.23二.选择题(本题共5小题,每小题4分,共20分)1-5.DBDBC三.计算题(本题共8小题,共38分)1.解一:3)1(x1x1)(xx1)sin(xelim33x0xx1xsinxelim3333330xx1x))(xx3!1x()x(x1limoo65解二:3)1(x1x1)(xx1)sin(xelim33x0xx1xsinxelim32x20x3x1xcose3xlim36xxsin6xee9xlim33xx40x6xxsin6xelim3x0x652.解:2232,22,aayaxyyayyyy,则22322232(1)()yakyay,故223221()ayRka。3.解:0x9x3xx0x9x3xxf(x)2323①当0x时1)3)(x-3(x96x3x(x)'f2,1)6(x6x6(x)''f令0(x)'f,得f(x)的驻点:3x1,4令0(x)''f,得f(x)的可疑拐点:1x2,②当0x时1)3)(x-3(x96x3x(x)'f2,1)6(x6x6(x)''f令0(x)'f,得f(x)的驻点:1x3,令0(x)''f,f(x)没有可疑拐点,③0x4是f(x)的不可导点又当1x时,0(x)'f,当0x1时,0(x)'f,当3x0时,0(x)'f,当3x时,0(x)'f,1x3,3x1是f(x)的极小点,极小值是51)f(和27f(3)0x4是f(x)的极大点,极大值是0f(0)又当0x时,0(x)''f,当1x0时,0(x)''f,当1x时,0(x)''f,点(0,0)和点11)(1,是f(x)的拐点。4.解:20x)dxf(111f(x)dx10f(x)dx01f(x)dx10f(x)dx102dxx)2x)(1(11102]dxx)(11x122x14[10]x11x)2ln(12x)2ln(1[21ln2)2(ln321232ln501f(x)dx012dx22xx1012)]2x2x1ln(x[)2ln(1所以20x)dxf(121232ln)2ln(15.解:1101xxdx10104t1dtt10105t1)d(t51105)]arcsin(t51[106.解:记10f(x)dxa,那么当0x时,10102f(x)dx2xxf(x)f(tx)dtx022axxf(x)f(u)dux1x0232axxxf(x)f(u)du两边求导,得:ax4x3(x)'xff(x)f(x)2ax43x(x)'f2所以4ax)dx(3xf(x)2C232axx又0f(0),f(x)可导必连续,从而得0C所以23ax2xf(x)于是两边求定积分,得:102103dxx2adxxa43a所以23x23xf(x)四、证明题(22分)1.证一:令1x2cosxf(x)则0)2f(f(0),f(x)在]2[0,上连续,且2sinx(x)'f,令0(x)'f,得驻点2arcsin)2,0(当x0时,0(x)'f,f(x)单调增加,当x0时,0f(0)f(x)又当2x时,0(x)'f,f(x)单调减少,6当2x时,0)2f(f(x)综上所述,当]2[0,x时,0f(x),即x21cosx。证二:令1x2cosxf(x)则0)2f(f(0),f(x)在]2[0,上连续,且2sinx(x)'f,cosx(x)''f)2,0(x0(x)''ff(x)在]2[0,上是向上凸的,当]2[0,x时,0)}2f(min{f(0),f(x),即得:当]2[0,x时,x21cosx。2.证:令f(x)lnxF(x),f(x)、lnx在[1,2]上连续,在(1,2)内可导,F(x)在[1,2]上连续,在(1,2)内可导,根据拉格朗日中值定理,至少存在一点(1,2),使得:1)-)(2('FF(1)F(2)………..(*)又x1f(x)(x)lnx'f(x)'F,0f(2)(或直接在[1,2]上应用罗尔定理即可证得。)1)f()ln('f)('F,0F(1)F(2)由(*)式可得:01)f()ln('f,即0)f()ln('f所以,至少存在一点(1,2),使得0)f()ln('f。3.证:令]f(x)dxaf(x)dxu[21xf(x)dxF(u)u0a0ua0)(a,则f(x)在)[0,上连续,F(u)在)[0,上可导,又显然有0F(a)。对F(u)求导,得:当0u时uf(u)21f(x)dx21uf(u)(u)'Fu07u0f(x)dx21uf(u)21}f(x)]dx[f(u){21u0f(x)在)[0,上单调减少,当xu时,0f(x)f(u),所以0}f(x)]dx[f(u){21(u)'Fu0从而,F(u)在)[0,上是单调减少的,于是当0ab时,有:0F(a)F(b),即:bab0a0]f(x)dxaf(x)dxb[21xf(x)dx。