第三章固体材料中的磁有序3-1铁磁性Ferromagnetism3-1-1特性1、T,FM态:,“易”饱和,M*非线性M-H曲线及磁滞回线2、TPMmostly.CT05~1010SM:CMCBCHHandHCT~cTccMHHRRRMBM4,(or=)RBRM0图36-23-1-2FM材料1、Materials:(1)元素:9,(33dmetals,Fe,Co,Ni;64fmetals),(2)合金及化合物:FM-FM,FM-NFM(etc))AFM-NFM(etc),TM(PM)–NFM(FM);compounds(34ln,,ScAuVWeak2,,,)CrOEuOSferrites有机FM;Low-d,MML(磁性多层膜)andUTF(超薄膜),UFP(超细颗粒),FM半导体.AlFeSiFe,(MnAlCMnAlCu,2,2ZrZn(3)特殊FM2、应用(1)软磁材料2513()~1010,(1010)CelowHOFe-Si,Fe–Ni,Fe-Co-Ni,等非晶合金,立方铁氧体.(2)硬磁材料.(),六角铁氧体,100CHOe217(),.XXSmFeNCetcAlnico,MnAlC,,(3)磁及磁光记录材料:等非晶膜,CoCr膜,Tb(Gd)-Fe-Co,颗粒膜()34~1010CHOe2:10CHOe高f~,较好的.sSmCo)(,,11142172xxCTMNSmFeBFeNdCoSm(5)传感器、换能器等.Magnetoelastic,magnetostrictive,MR,GMR,magneto-caloric,etc.(4)微波材料(6)自旋电子学(Spintronics).3-1-3Weiss分子场理论(MF),局域模型1、基本假设:分子场导致自发磁化.MF:,,.effJJJBeffHMHHMEgmHForT=0K,M=0,.JBssJBMNgJNppgJT≠0K时,磁能和热运动能相竞争完全饱和BJJNgM0H应该足够大以致和热运动能相当.仿照对顺磁性的处理,作用在磁矩上的有效场:MHHe)(0JBMMBJJNgM0其中kTMHJgBJ/)(002000MHMNkTMM20000MNkTMMH时,当从布里渊函数求解自发磁化强度的图解法:随温度上升,减小,自发磁化强度MS减小,当达到某一临界温度TC时,MS=0,铁磁性消失。20031MNkTJJckJJNgTBJc3)1(202当TTC时,材料呈铁磁性)(0JSBMMcSBJTTMMJJkTMJgH//13/000时,)//13(00cSJSTTMMJJBMM)/(/13010MMBMMJJTTSJSc)(0cJSTTfMM当TTC时,外场H0时,MMS(内禀磁化)dHdddBMdHdBMdHdMJJ)()(00)1()(00dHdMkTJgBMBJJkTJgBMkTJgBMBJJBJJ/)(1/)(0000)(13)(13JCJBJJTTCBJJkJJNgCBJ3)1(202其中当TTC时,无自发磁化,MS=0,材料为顺磁性1//130cSTTMMJJJJBJ31)(kTMHJgBJ/)(0kTMHJgJJJNgBMMBJBJJ)(31)(00)()(3)1(022MHTCMHkTJJNgBJHCTCMpTCCTC有效Bohr磁子数=(1)JgJJkNkJJNgCeffBJ33/)1(22,C,)1(222BJeffJJgeffp(IfC-WLawbecomesCurielaw0H,cT(PMmaterials))2、结论(1)局域电子铁磁态判断标准:(3)ForTM,;0)(Ji,0)(ii(交换常数J0).,)2(0BSBJNpJNgMSp饱和Bohr磁子数.,SJ,2Jg,2SpS(4)WhenHMp/0p,0KTsp整数.sMHMMH)(,03.关于M0,pS,peff,pc,TCandHλ的实验(1):两次外推.(a)Ms由高场的M-H曲线外推.0M(b)M0由低温下的MS–T外推(2),100BABSNAMNMp,densityatomicAWeight,.noAvogadroNA(3)Cisobtainedby),/3(2BeffNkCpTabove.CT,2SJgpJS.)1(JJgpJeff22(1),effJpgJJFor3delements,(4)scpp/,2Jg),2()22(22cceffppsspcp.effpis2sobtainedfrom局域化模型,.1/scpp非局域化模型,pc/ps1.(5):由TC附近的Ms-T曲线外推(也可由其他曲线得到)CT,,,,,)TCTTTTTetc()CTK()K0M()SpHFe1043110117432.2163.13(4.2)42.291.03Co1388142814471.7153.13(3.21)32.291.34Ni6276505210.6061.6220.91.49Gd293.2131719807.557.9877.040.93(6)Somedataspeffpcpscpp/)104,(2MAG)(B)(B)(B)(B(7)MF理论的一些问题*,exp,,CCTerimentsT短程有序.ssscppHppp,)(,整数*3dmetals:3-1-4巡游电子铁磁性1、物理图象NNUEex0U导致能带劈裂exE2NNN劈裂前,nNNnNN2,2劈裂后,02nUEex交换能变化2.Stoner判据.动能的变化)(2ENnnEEik能量的总变化)(22ENnnUEEEikex))(1()(2ENUENnii出现铁磁性的条件1)(ENUi即:0E)(422ENmEiBk能量的总变化224BexmUE时无自发磁化。加外磁场如果,1)(ENUimHEH0HmENUENmEiiB022))(1()(4得由能量极小条件,0mE)(1)(2)(1)(22002ENUENHENUENmiiBiiB交换增强顺磁性(2)传导电子系统铁磁性条件①,large;(3)增强的顺磁性②N(E)large.F(1)判据:1)(ENUi0U11)(PaulipepeSometheoreticalvaluesFE11LiVFeCo(fcc)NiPdN()0.481.643.062.014.062.312.252.24-2-1.5-0.95ActuallyFMTM:1,011ExchangeenergyofCEofLietc.islargerthanFe,Co,Ni!ButN(EF)issmall!(1)实验ddsp334sFe4.82.60.62.2Co5.03.30.71.7Ni5.04.40.60.63.电子分布及饱和磁矩(2)Experimentalvaluesof’s(neutrondiffraction)spspLpspinpspp(3d)p(4s)gFe2.39-0.212.182.0910.09182.2142.216Co1.99-0.281.7152.1870.14721.5681.715Ni0.62-0.1050.5152.1830.05070.5630.606(1)可依据Fermi-Dirac统计计算出Ms-T,χ-T,Tc.(2)问题.计算出的Tc偏高。计算结果Tc:Fe:4400-6200K,Co:3300-4800K,Ni:2900K.Tc以上χ-T不同于居里-外斯定律.4.results3-2反铁磁性Antiferromagnetism(AFM)亚铁磁性Ferrimagnetism(FIM)3-2-1AFM1、特性.T,AFM态,NTsM=04610~10--WhenTTT,PM态,NT化合物,局域磁矩,PCTP0K,0(1)(2)(3)T=TN,=max.金属中,巡游电子,较复杂.)(T2、AFM材料.(1)(TM)和Ⅴ,Ⅵ,Ⅶ元素形成的化合物,如MnO,MnS,MnF2,MnTe,FeF2,FeCl2,FeO,CoCl2,CoO,NiO.(2)TM及其合金,Mn(),(bcc):FM?,,ABNTMn:T705C,o=1.9,1.78,0.6,0.25,~95-100K.复杂体心立方结构,4sites,T705C,o,MnMn(fcc).FromCu-Mnalloy,TN=207CandoBA25.2Cr(bcc):=312K.磁矩在晶格中波动分布.NTNTFe(T910C,fcc):~40K?MnAu2,Pt3Feetc.螺旋式AFM.大部分RE金属显示螺旋式及其他复杂自旋结构的AFM和FIM.T1100ºC,3、理论解释(1)局域磁矩,次晶格模型.次晶格:0.ijiioJiiMMBiiiBijjjgJHMkTiiMM,jjijiMHH每个次晶格的行为类似于铁磁性jM•WhenH=0,butNTTjiMM0iiMM•每个次晶格服从C-Wlaw,NTT.0,H总的M也服从C-Wlaw.两次晶格为例iM),(2ABAMMHTCM)(2BABMMHTCM,3/)1(22kJJNgCBjBAMMMPTCCP)(21•EvenH=0.,NTT0,BAMMCTN)(21(2)金属与合金.巡游电子.TM巡游电子次晶格理论.(a)扩展的Stoner模型.AFM判据2N1.2BFE(b)自旋密度波(SDW)理论.由于交换作用导致自旋密度为波动分布,正、负自旋电子的空间分布不均匀.A.W.Overhauser.P.R.128,1437(1962),PRL4,462(1960)CrGroundstateSupposen+andn-areallpositivenumber.Whenn+n-,misup,whilen+n-,misdown.(3)磁晶各向异性.单晶中的自旋突转rotationHHijMM:.//://,NTT://(i)WhenH//oneeasyaxisHparallelto,antiparalleltoAM.BM),(0AJABMMkTMMHJgABBJA/)(),(0BJBBMMkTMMHJgBABJB/)(AMSlightlyBMHMMBA//,NT.1//AtWhenTTN,.00.////KatTwithdecrease(ii)Wheneasyaxis,rotation.H:χ0)(BAAAMMHMHHM02sincos2AAMHM,/sin2HMMAH.1.//(iii)SpinFlop(4)AFM畴.(5)AFM/FM双层膜或颗粒中的AFM/FM界面相互作用,交换各向异性及交换偏置,磁滞回线的位移.H(a)(b)HEasyaxisM-30-20-100102030-1.0-0.50.00.51.0-30-20-1001