20.某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数、频率分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数、频率分布表中,的值为____________,的值为____________,并将频数分布直方图补充完整;(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解:(1)补全直方图(2)甲同学的视力情况范围:(3)视力正常的人数占被统计人数的百分比是:全区初中毕业生中视力正常的学生约有:(人)21.(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:46000-22000x-46000-220001.5x=4解得:x=2000,经检验,x=2000是原方程的解,答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20-3x)(8-2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米22.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.23.解答题已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线与点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD并延长交AE于点F,若EC∥AB,OA=6,求AF的长.答案(1)证明:连接OC,∵CE是⊙O的切线,∴∠OCE=90°,∵OA=OC,OD⊥AC,∴∠COE=∠AOE,∵在△COE和△AOE中,,∴△COE≌△AOE(SAS),∴∠OAE=∠OCE=90°,∴OA⊥AE,∴AE与⊙O相切;(2)解:设BF与OC相交于点G,∵EC∥AB,∴∠AEC=∠OAE=90°,∵∠AEC=∠OAE=∠OCE=90°,∴四边形OAEC是矩形,∵OA=OC,∴矩形OAEC是正方形,∴OG∥AE,AE=AO=6,OD=ED,∵OG∥AE,∴==1,∴OG=EF,∵OG∥AE,∴==,∴=,∴AF=AE=×6=4.24.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.答案(1)△DEF为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.②y=2x2﹣8x+16(0<x<4),y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.解析试题分析:(1)根据旋转的性质,易知△EFD是等边三角形;利用等边三角形的性质、勾股定理即求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求出面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4试题解析:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.∵EF=EH∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.25.(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是______(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=______CE(用含n的代数式表示).答案解:(1)BD=2CE.理由如下:如图1,延长CE、BA交于F点.∵CE⊥BD,交直线BD于E,∴∠FEB=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CF=2CE.∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180-45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=CF,∴BD=2CE;(2)结论BD=2CE仍然成立.理由如下:如图2,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=AC,∴BD=CG=2CE;(3)BD=2nCE.理由如下:如图3,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=nAC,∴BD=nCG=2nCE.故答案为BD=2CE;2n.26.如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.答案(1)y=-x2+4x+5;(2)当时,四边形MEFP面积的最大,最大值为,此时点P坐标为;(3)当时,四边形FMEF周长最小.解析试题分析:(1)设顶点式,利用待定系数法求出抛物线的解析式.(2)求出四边形MEFP面积的表达式,利用二次函数的性质求出最值及点P坐标.(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图2所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.试题解析:解:(1)∵抛物线的对称轴为直线x=2,∴设抛物线为.∵抛物线过点A(-1,0)、C(0,5),∴,解得:.∴二次函数的函数关系式为,即y=-x2+4x+5.(2)当a=1时,E(1,0),F(2,0),设P的坐标为(x,-x2+4x+5)如答图1,过点P作y轴的垂线,垂足为G,则四边形MEFP面积====,∴当时,四边形MEFP面积的最大,最大值为,此时点P坐标为.(3)如答图2,把点M向右平移1个单位得点M1,再做点M1关于x轴的对称点M2,在四边形FMEF中,因为边PM,EF为固定值,所以要使四边形FMEF周长最小,则ME+PF最小,因为ME=M1F=M2F,所以只要使M2F+PF最小即可,所以点F应该是直线M2P与x轴的交点,由OM=1,OC=5,得点P的纵坐标为3,根据y=-x2+4x+5可求得点P()又点M2坐标为(1,-1),∴直线M2P的解析式为.当y=0时,求得,∴F(,0).∴.∴当时,四边形FMEF周长最小.