如何解决初中数学难点之应用题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

如何解决初中数学难点之应用题应用题联系实际,生动地反映了现实世界的数量关系,能否从具体问题中归纳出数量关系,反映了一个人分析问题、解决问题的实际能力.列方程解应用题,一般应有审题、设未知元、列解方程、检验、作结论等几个步骤.下面从几个不同的侧面选讲一部分竞赛题,从中体现解应用题的技能和技巧.一.合理选择未知元例1(1983年青岛市初中数学竞赛题)某人骑自行车从A地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B地,共用55分钟.回来时,他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用1.5小时,求A、B两地相距多少千米?例2(1972年美国中学数学竞赛题)若一商人进货价便谊8%,而售价保持不变,那么他的利润(按进货价而定)可由目前的x%增加到(x+10)%,x等于多少?解本题若用直接元x列方程十分不易,可引入辅助元进货价M,则0.92M是打折扣的价格,x是利润,以百分比表示,那么写出售货价(固定不变)的等式,可得:M(1+0.01x)=0.92M[1+0.01(x+10)].约去M,得1+0.01x=0.92[1+01.1(x+10)].解之,得x=15.例3在三点和四点之间,时钟上的分针和时针在什么时候重合?例4(1985年江苏东台初中数学竞赛题)从两个重为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者的含铜百分数相等,问切下的重量是多少千克?解采用直接元并辅以间接元,设切下的重量为x千克,并设m千克的铜合金中含铜百分数为q1,n千克的铜合金中含铜百分数为q2,则切下的两块中分别含铜xq1千克和xq2千克,混合熔炼后所得的两块合金中分别含铜[xq1+(n-x)q2]千克和[xq2+(m-x)q1]千克,依题意,有:二.多元方程和多元方程组例5(1986年扬州市初一数学竞赛题)A、B、C三人各有豆若干粒,要求互相赠送,先由A给B、C,所给的豆数等于B、C原来各有的豆数,依同法再由B给A、C现有豆数,后由C给A、B现有豆数,互送后每人恰好各有64粒,问原来三人各有豆多少粒?解设A、B、C三人原来各有x、y、z粒豆,可列出下表:解得:x=104,y=56,z=32.答:原来A有豆104粒,B有56粒,C有32粒.例6(1985年宁波市初中数学竞赛题)某工厂有九个车间,每个车间原有一样多的成品,每个车间每天能生产一样多的成品,而每个检验员检验的速度也一样快,A组8个检验员在两天之间将两个车间的所有成品(所有成品指原有的和后来生产的成品)检验完毕后,再去检验另两个车间的所有成品,又用了三天检验完毕,在此五天内,B组的检验员也检验完毕余下的五个车间的所有成品,问B组有几个检验员?解设每个车间原有成品x个,每天每个车间能生产y个成品;则一个车间生产两天的所有成品为(x+2y)个,一个车间生产5天的所有成品为(x+5y)个,由于A组的8个检验员每天的检验速度相等,可得答:B组有12个检验员.三.关于不等式及不定方程的整数解例7(1985年武汉市初一数学竞赛题)把若干颗花生分给若干只猴子,如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子得不到5颗,求猴子的只数和花生的颗数.解:设有x只猴子和y颗花生,则:y-3x=8,①5x-y<5,②由①得:y=8+3x,③③代入②得5x-(8+3x)<5,∴x<6.5因为y与x都是正整数,所以x可能为6,5,4,3,2,1,相应地求出y的值为26,23,20,17,14,11.经检验知,只有x=5,y=23和x=6,y=26这两组解符合题意.答:有五只猴子,23颗花生,或者有六只猴子,26颗花生.例8(1986年上海初中数学竞赛题)在一次射箭比赛中,已知小王与小张三次中靶环数的积都是36,且总环数相等,还已知小王的最高环数比小张的最高环数多(中箭的环数是不超过10的自然数),则小王的三次射箭的环数从小到大排列是多少?解设小王和小张三次中靶的环数分别是x、y、z和a、b、c,不妨设x≤y≤z,a≤b≤c,由题意,有:因为环数为不超过10的自然数,首先有z≠10,否则与①式矛盾.若设z=9,则由①知:xy=4,∴x=2,y=2,或x=1,y=4,∴x+y+z=13或x+y+z=14.又由②及c<z知,c|36,∴c=6,这时,ab=6.∴a=2,b=3,或a=1,b=6∴a+b+c=11或a+b+c=13又由③知:x+y+z=a+b+c=13∴取x=2,y=2,z=9.答:小王的环数分别为2环,2环,9环.例9(1980年苏联全俄第6届中学生物理数学竞赛题)一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初,每辆汽车乘了22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上,已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?解设起初有汽车k辆,开走一辆空车后,平均每辆车所乘的旅客为n名,显然,k≥2,n≤32,由题意,知:22k+1=n(k-1),∴k-1=1,或k-1=23,即k=2,或k=24.当k=2时,n=45不合题意,当k=24时,n=23合题意,这时旅客人数为n(k-1)=529.答:起初有24辆汽车,有529名旅客四.应用题中的推理问题竞赛中常见的应用题不一定是以求解的面目出现,而是一种逻辑推理型.解答这类题目不仅需要具备较强的分析综合能力,还要善于用准确简练的语言来表述自己正确的逻辑思维.例10(1986年加拿大数学竞赛题)有一种体育竞赛共含M个项目,有运动员A、B、C参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其中p1、p2、p3为正整数且p1>p2>p3,最后A得22分,B与C均得9分,B在百米赛中取得第一,求M的值,并问在跳高中谁取得第二名?分析考虑三个得的总分,有方程:M(p1+p2+p3)=22+9+9=40,①又p1+p2+p3≥1+2+3=6,②∴6M≤M(p1+p2+p3)=40,从而M≤6.由题设知至少有百米和跳高两个项目,从而M≥2,又M|40,所以M可取2、4、5.考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴≤8,这样A不可能得22分.若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.∵4(p1+p2+p3)=40,∴p2+p3=4.故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.若M=5,这时由5(p1+p2+p3)=40,得:p1+p2+p3=8.若p3≥2,则:p1+p2+p3≥4+3+2=9,矛盾,故p3=1.又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.A=22=4×5+2.故A得了四个第一,一个第二;B=9=5+4×1,故B得了一个第一,四个第三;C=9=4×2+1,故C得了四个第二,一个第三.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功