在实际问题中经常要遇到求三元以上函数的极值问题,对此可由二次型的正定性加以解决.定义1设n元函数12()(,,)nfXfxxx在12(,,,)TnnXxxxR的某个邻域内有一阶、二阶连续偏导数。记12()()()(),,,nfXfXfXfXxxx,()fX称为函数()fX在点12(,,,)TnXxxx处的梯度.定义3满足0()0fX的点0X称为函数()fX的驻点.定义4222211212222212()()()()()()()()nijnnnnnfXfXfXxxxxxfXHXxxfXfXfXxxxxx称为函数12()(,,)nfXfxxx在点nXR处的黑塞矩阵。显然()HX是由()fX的2n个二阶偏导数构成的n阶实对称矩阵.定理8(极值存在的必要条件)设函数()fX在点000012(,,,)TnXxxx处存在一阶偏导数,且0X为该函数的极值点,则0()0fX.定理9(极值的充分条件)设函数()fX在点0nXR的某个邻域内具有一阶、二阶连续偏导数,且000012()()()(),,,0nfXfXfXfXxxx则:(1)当0()HX为正定矩阵时,0()fX为()fX的极小值;(2)当0()HX为负定矩阵时,0()fX为()fX的极大值;(3)当0()HX为不定矩阵时,0()fX不是()fX的极值。应注意的问题:利用二次型的正定性来判断多元函数的极值虽然是一个很好的方法,但也有一定的局限性,因为充分条件对正定和负定的要求是很严格的,若条件不满足,那结论就不一定成立.例3求三元函数222(,,)23246fxyzxyzxyz的极值.解先求驻点,由220440660xyzfxfyfz得1,1,1xyz所以驻点为0(1,1,1)P.再求(Hessian)黑塞矩阵因为2,0,0,4,0,6xxxyxzyyyzzzffffff,所以200040006H,可知H是正定的,所以(,,)fxyz在0(1,1,1)P点取得极小值:(1,1,1)6f.当然,此题也可用初等方法222(,,)(1)2(1)3(1)6fxyzxyz求得极小值6,结果一样.4.2投入产出的矩阵理论投入产出分析对于生产生活中有着非常广泛和重要的作用,它是利用数学理论和计算机技术来对经济活动中生产部门和消费部门之间的相互关系进行研究的,尤其是研究和分析各部门在产品生产和消费之间的数量关系。在利用矩阵理论研究投入产出经济问题的过程中,通常地会把所讨论的某一个经济系统反映在一张平衡表中(我们称之为投入产出表),并通过建立数学模型把这种关系用数学关系式表示出来。我们可以从它们特有的数学模型看出来,这种模型是研究某一经济系统中各部门之间“投入”和“产出”关系的一种线性模型。能够反映一个系统中各部门之间数量依存关系的投入产出表以及由此得到的平衡方程统被我们称之为投入产出模型。投入产出模型按其内在结构可分为两类:一是闭模型;另一个是开模型。一、投入产出分析的闭模型这类模型计量全部产出都被当作生产中的所有投入而消耗的情况。它可以反映整个生产系统的投入产出结构。例1.有三个农户张、王、李,各有所长,商定通过转工来实行联合经营。张要把劳动时间的20%用在自家,40%用在王家,40%用在李家;王要把劳动时间的10%用在张家,50%用在自家,40%用在李家;李要把劳动时间的60%用在张家,10%用在李家,30%用在自家。一年后,需要计算每户应得多少劳动报酬(包括在自家的劳动报酬),以使每个人的劳动报酬与此其所做的工作量相当。分析:将上述张、王、李的劳动时间分配情况排列成一个数表,即33矩阵张王李在张家做工所占比例0.20.10.6在王家做工所占比例0.40.50.1在李家做工所占比例0.40.40.3以123xxx、、分别表示张、王、李应得的劳动报酬。为公平合理,就要求每户付出的总量与所得到的总量相等,因此,得到如下等量关系:内部消耗=总产出。于是有:11230.20.10.6xxxx21230.40.50.1xxxx31230.40.40.3xxxx解:设123xxx、、分别表示张、王、李应得的劳动报酬则上述方程组用矩阵表示为1122330.20.10.60.40.50.10.40.40.3xxxxxx若记A为系数矩阵(直接消耗矩阵),X为张、王、李产出的列向量,则AX为用于内部消耗所需在张、王、李家的投入量。于是,上述矩阵方程可表示为XAX化简得0EAX(1)该方程的解即为张、王、李应得的报酬。而方程(1)的解的情况与矩阵EA的秩有关,因而求解(1)就变成求矩阵EA的秩:0.80.10.6310.40.5-0.110360.40.40.732=01360.40.5-0.100000.90.8000EA由于23,REA所以方程(1)有非零解。取3=0,xcc则方程(1)的解用矩阵表示:123313632361xxcx若取C=360元,则张、王、李的报酬为123313632361xxcx=310320360一般地一个投入产出闭模型的投入产出矩阵为,1,2,(,)Aaijijn。这里aij表示i被消耗的与j所生产的产出量之比。对于闭模型来说,每列之和等于1,即表明全部产出都被消耗。而对所有的元素来说01aij。如果A是这个含有n个成分的闭系统的投入产出矩阵X,表示该系统每个产出评价值的列向量,那么有:XAX即:00XAXEAX这是一个齐次线性方程组,它的解与EA的秩有关,只要REArn,这个方程组就有非零解。如果矩阵A中的元素为正数且每一列的和等于1那么这个方程有一参数解,即1n个未知量可用其余的一个作为参数的未知量解出。这个参数作为一个尺度因子起作用。二、投入产出分析的开模型在开模型中,除了产出的内部消耗外,还有产出的外部需求。这些外部需求包括出口、消费者的需求等。因而,这里以产出都被消耗为前提。例2.假定一个农场生产三种产品RSTR、、。产品的一部分分别用于这三种产品的生产中,而其余的部分用于消费。ST和这两种产品的使用情况也是如此。现用一张表来描述在一定时期内这三种产品在使用中的相互关系。表1单位:元RST消费合计R50204070180S20302090160T30202050120表中每一行表示每种产品的产值的投入情况。在总产值180RST元中,、、产品生产中分别耗用了50204070、和元,其中元被用来供给消费。由于R产品的全产出都被RST、、和消费利用,产的目的是为了满足消费需求,而产出70元的产量。为满足着一需求,R必须产出总产值180元,因为还有110元是RS、、和T在生产中所需要的。现假定消费需求是变动的。假设在原有需求的基础上第三年的需求分别为60,110,60,在生产条件不便的情况下,问为满足这些预测的需求第三年应产出多少?分析:由于这三种产品中的任何一种产品的生产都受到其他两种产出变化的影响。因此,第三年对R产品的总需求不仅取决于对R的消费需求,而且还决定于S和T产品的需求。这就是说,这些产业之间是相互联系的。这类问题的解决可用投入产出分析开模型求出。为此,需要确定生产一个单位的R产品需要消耗RST、、产品各多少?例如,要得到180个单位的R产品需要消耗50个单位的R,20个单位的S和30个单位的T。由此构成一系列的比值,就是生产一个单位的R产品所需要的各种产品的投入量:50/1800.278R产品的投入20/1800.111量,为S产品的投入量30/1800.167,为T产品的投入量。如果要求产出1x个单位的R产品,则需要投入10.278x个单位的R产品10.111x,个单位的S产品,10.167x个单位的T产品。这样做下去,就可作出这一个矩阵:RST0.2780.1250.333=0.1110.1680.1670.1670.1250.167RAST第1列表示产出1个单位的R产品所需要投入的R、S、T产品的数量,第2列表示产出1个单位的S产品所需要投入的R、S、T产品的数量,第3列表示产出1个单位的T产品所需要投入的R、S、T产品的数量。例如,第3行第2列中的元素(0.125)表示产出一个单位的S产品所需要投入的T产品的数量。解:以123,XxxxT,为满足给定需求6011060DT,,所需要的总产出量,则AX表示内部消耗所要求的R、S、和T产品的投入量。生产与消费平衡的前提条件要求:内部消耗+消费需求=总产出从矩阵A,总产出向量X和需求向量D来看,这个需求就等于这个方程式:1122330.2780.1250.333600.1110.1680.1671100.1670.1250.16760xxxxxx以这个方程式对预定的需求向量D求X,而矩阵A可按上述方法根据某个已知的生产过程求出。于是求满足未来第三年需求所要求的总产出X,就要解以下方程AXDX:化简得 ? EAXD(2)求解X,得1 XEAD10.7720.1250.33360=0.1110.8120.1671100.1670.1250.833601.60840.35680.713160178.3220.29461.33630.3857110187.8110.36690.27211.401360135.969因此,满足预测需求D所需要的RST、和的总产出为:123178.322187.811135.969xxx投入产出分析的开模型可归结为如下:设一经济系统有n个部门或产品,每个部门生产某一产品或服务,除供n个部门消耗外,还有其余的部分用来满足预定的各种需求。在给定满足现有需求所需要的每个部门总产出的情况下,要求满足未来需求所需要的每个部门的总产出。开模型的矩阵,1,(),2,,Aaijijn由元素aij组成。这里aij是j部门产品生产一个单位产出量所需要的i部门的投入量,即/aijxijxj。如以X列向量表示该系统每个部门的产出量,D列向量表示该系统每个部门产出的需求量,那么就有:XAXD由此得EAXD,如果0EA,则EA有逆矩阵,在此条件下,求解X:1XEAD通过记算1EA来对各种需求状况D求X,对经济计量特别有用。但应注意,应用投入产出矩阵解决预测问题是假定存在这样两个前提条件:一是每个部门只生产一种产品;二是所考察的这段时间内生产技术没有进步,即矩阵A中的比值保持不变。