6.3反比例函数的应用授课班级及:九年级(8)授课人:孟小军教学目标:1.知识与技能(1)利用反比例函数解决实际问题及有关反比例函数的综合题.(2)建立反比例函数模型及综合运用有关知识解决与反比例函数有关的综合问题.2.过程与方法经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.重点:建立反比例函数的模型,进而解决实际问题。难点:理解反比例函数的实际意义。一.复习提问什么是反比例函数?反比例函数的图像是什么?反比例函数的图像有什么性质?反比例函数:当k0时,两支曲线分别在,在每一象限内,y的值随x的增大而______。当k0时,两支曲线分别在,在每一象限内,y的值随x的增大而。二.探究学习,得出新知例1蓄电池的电压为定值。使用此电源时,电流I(A)与电阻R(欧姆)之间函数关系如图所示:(1)蓄电池的电压是.函数表达式是(2)如电流不得超过10A,那么用电器的可变电阻应控制在范围内。例2某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?(2)当木板面积为0.22m时,压强是?(3)如果要求压强不超过6000Pa,木板面积至少要?(4)在直角坐标系中,作出相应的函数图象。(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。S/m2p/PaO例3 如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标为(3,23)。(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?三课堂检测1.某蓄水池的排水管每时排水83m,6h可将满池水全部排空。(1)蓄水池的容积是?(2)如果增加排水管,使每时的排水量达到Q(3m),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的关系;(4)如果准备在5h内将满池水排空,那么每时的排水量至少为?(5)已知排水管的最大排水量为每时123m,那么最少时间可将满池水全部排空?四作业159页习题第二题五小结:让学生会用函数的思想解决生活中的实际问题。