发明1一种弱信号目标检测的优化方法(许改1027)_

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

说明书摘要1本发明涉及一种弱信号目标检测的优化方法,其具体步骤如下:(1)读取离散化后的输入信号;(2)对信号x(n)进行四重自相关;(3)计算相关函数的频谱;(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,由四重相关信号频谱计算信号)(1nx的频谱;(5)计算匹配滤波器的传输函数;(6)求信号经过匹配滤波器的频谱;(7)采用多正弦窗进行谱估计;(8)将信号频谱还原为时域信号。本发明方法中,利用四重相关和双谱(四重相关函数的频谱函数)分析,实现高阶矩范围内信号处理,采用匹配滤波器进行滤波,该滤波器能够给出最大的信噪比。四重相关匹配滤波技术较之二重相关匹配滤波技术,可以进一步抑制噪声,从而提高信噪比。多正弦窗谱估计具有较小的偏差。同时,由于进行了多个特征谱的加权平均,对谱图会有一定的平滑效果,因此谱估计的方差性能较传统的周期图法会有显著的改善;同时能够保证一定的频率分辨能力。说明书摘要2摘要附图1开始输入信号进行四重相关将输入信号由时域变为频域滤波器进行匹配滤波将输入信号由频域变为时域结束利用多正弦窗进行谱估计权利要求书11、一种弱信号目标检测的优化方法,其特征在于:其具体步骤如下:(1)读取离散化后的输入信号:x(n)n=0,1,2……N-1,其中N为信号x(t)的采样点数;(2)对输入信号x(n)进行四重自相关,具体方法为,设信号x(n)包括有用信号s(n)和随机加性噪声u(n),信号表达式为:x(n)=s(n)+u(n),首先对输入信号x(n)进行二重自相关:10)()(1lim)(NnNxxmnxnxNmr)()()()(1lim10mnumnsnunsNNnNm=0,1,2……N-1根据信号与信号相关,信号与噪声的不相关性,有:10)()(1lim)(NnNxxmnsnsNmr即:)()(mrmrssxx,表明含噪信号x(n)的二重相关近似等于有用信号s(n)的二重自相关。信号x(n)的三重自相关可表示为:根据)(nrxx与)(ns相关,)(nrxx与噪声的不相关性,有:)()(mrmrsssxxx表明含噪信号x(n)的三重相关近似等于有用信号s(n)的三重自相关。同理,可得,信号x(n)的四重相关可表示为:)()(mrmrssssxxxx10)()(1lim)(NnxxNxxxmnxnrNmr)()()(1lim10mnumnsnrNxxNnN权利要求书2即含噪信号x(n)的四重相关近似等于有用信号s(n)的四重自相关。(3)计算相关函数)(mrxxxx和输入信号x(n)的频谱:)2exp()()(10kmNjmrRNmxxxxkk=0,1,2……N-1)2exp()()(10knNjnxXNnkk=0,1,2……N-1(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,利用公式4)()(kkRS,由四重相关信号频谱计算有用信号s(n)的频谱;(5)计算匹配滤波器的传输函数:当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信噪比,这种滤波器称为匹配滤波器;匹配滤波器的传输函数为:)()(*kkXH;(6)求信号经过匹配滤波器的频谱:经过滤波后的信号)(1nx的频谱为:)()()(1kkkHSX(7)采用多正弦窗进行谱估计:窗函数取为:1)1(sin12)(NnlNnln=0,1,2……N-1设K为正弦窗数量,k为第k个正弦窗的加权系数,则经过滤波后的信号)(1nx的多正弦窗谱估计为:KlkmtllkmtXX1)()(其中)(kmtkX为第k个特征谱。而211)2exp()()()(NnlkmtlknNjnnxXk=0,1,2……N-1所以多正弦窗谱估计可表示为:权利要求书32111)1)1(()1)1((1)(KlkklkmtNlXNlXNX(8)将信号频谱还原为时域信号:1022exp1)(NkkmtknNjXNnxn=0,1,2……N-1(备注:需要针对上述出现多个参数予以定义,也需要说明,各个字母所代表的含义,大小写均需要说明,如果表示含义一致,那么大小字母应当统一,如需要说明Ω代表的含义,H代表的含义,等等,其他没有定义的字符含义均需要定义或者予以说明)说明书1一种弱信号目标检测的优化方法技术领域本发明涉及一种弱信号目标检测的优化方法,属于计算机算法技术领域。背景技术相关检测技术是根据噪声与噪声、噪声与信号均不相关,而信号与信号则完全相关的特性,通过相关运算达到去除噪声的一种技术。现已普遍证明,它是从噪声中提取有用信号,提高输出信噪比的有效方法。它在自动控制、通信、雷达等领域都获得了广泛的应用。四重相关和双谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理方法,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且双谱富有丰富的冗余信息。被动式监控探测系统,例如红外监控探测系统较之于主动式探测系统具有难以比拟的优势。然而,被动式目标探测系统所要探测的信号通常迭加有强噪声。因此,从强噪声中将有用的信号提取出来,就成为目标识别的前提。四重相关检测技术可实现信号与噪声的分离,去除噪声。采用匹配滤波器,给出最大的信噪比。通常,对监控探测系统所探测到的目标信号的处理主要是利用二阶统计矩,即功率谱和二重相关函数,这就是二重相关匹配滤波技术。从频域角度来分析,二重相关匹配滤波器可以最大限度地吸收有用信号的能量,而最大限度地抑制信号频带以外的噪声。根据信号与噪声的不同频谱特点,采用线性滤波器消除噪声频谱。当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信噪比。然而,许多实验研究表明,无论二重相关滤波器设计得多么精细,信号频带之内的噪声仍然是难以抑制的。为了进一步提高信噪比,应该设法抑制信号频带之内的噪声。一个有效的解决办法就是采用高阶矩范围内的信号处理方法。四重相关和双谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理片法,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且双谱富有丰富的冗余信息,因此,四重相关匹配滤波技术较之二重相关匹配滤波技术可以进一步抑制噪声从而提高信噪比。随着这一技术研究的深人,基于四重相关的分析方法发展了许多新的信号处理方法,使得这一技术更加完善.并且在红外成像、信号的高阶谱分析等诸多领域获得了广泛的应用。在滤波方面,线性滤波器可以地滤除信号中的噪声,但滤波以后的信噪比不够高,当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信说明书2噪比。多正弦窗谱估计具有较小的偏差。同时,由于进行了多个特征谱的加权平均,对谱图会有一定的平滑效果,因此谱估计的方差性能较传统的周期图法会有显著的改善。同时能够保证一定的频率分辨能力。发明内容本发明的目的在于提供一种弱信号目标检测的优化方法,以便更好地针对弱信号目标检测进行优化,采用更好的算法予以优化。为了实现上述目的,本发明的技术方案如下。一种弱信号目标检测的优化方法,其具体步骤如下:(1)读取离散化后的输入信号:x(n)n=0,1,2……N-1,其中N为信号x(t)的采样点数;(2)对输入信号x(n)进行四重自相关,具体方法为,设信号x(n)包括有用信号s(n)和随机加性噪声u(n),信号表达式为:x(n)=s(n)+u(n),首先对输入信号x(n)进行二重自相关:10)()(1lim)(NnNxxmnxnxNmr)()()()(1lim10mnumnsnunsNNnNm=0,1,2……N-1根据信号与信号相关,信号与噪声的不相关性,有:10)()(1lim)(NnNxxmnsnsNmr即:)()(mrmrssxx,表明含噪信号x(n)的二重相关近似等于有用信号s(n)的二重自相关。信号x(n)的三重自相关可表示为:10)()(1lim)(NnxxNxxxmnxnrNmr)()()(1lim10mnumnsnrNxxNnN说明书3根据)(nrxx与)(ns相关,)(nrxx与噪声的不相关性,有:)()(mrmrsssxxx表明含噪信号x(n)的三重相关近似等于有用信号s(n)的三重自相关。同理,可得,信号x(n)的四重相关可表示为:)()(mrmrssssxxxx即含噪信号x(n)的四重相关近似等于有用信号s(n)的四重自相关。(3)计算相关函数)(mrxxxx和输入信号x(n)的频谱:)2exp()()(10kmNjmrRNmxxxxkk=0,1,2……N-1)2exp()()(10knNjnxXNnkk=0,1,2……N-1(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,利用公式4)()(kkRS,由四重相关信号频谱计算有用信号s(n)的频谱;(5)计算匹配滤波器的传输函数:当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信噪比,这种滤波器称为匹配滤波器;匹配滤波器的传输函数为:)()(*kkXH;(6)求信号经过匹配滤波器的频谱:经过滤波后的信号)(1nx的频谱为:)()()(1kkkHSX(7)采用多正弦窗进行谱估计:窗函数取为:1)1(sin12)(NnlNnln=0,1,2……N-1设K为正弦窗数量,k为第k个正弦窗的加权系数,则经过滤波后的信号)(1nx的多正弦窗谱估计为:说明书4KlkmtllkmtXX1)()(其中)(kmtkX为第k个特征谱。而211)2exp()()()(NnlkmtlknNjnnxXk=0,1,2……N-1所以多正弦窗谱估计可表示为:2111)1)1(()1)1((1)(KlkklkmtNlXNlXNX(8)将信号频谱还原为时域信号:1022exp1)(NkkmtknNjXNnxn=0,1,2……N-1(备注:需要针对上述出现多个参数予以定义,也需要说明,各个字母所代表的含义,大小写均需要说明,如果表示含义一致,那么大小字母应当统一,如需要说明Ω代表的含义,H代表的含义,等等)该发明的有益效果在于:本发明方法中,利用四重相关和双谱(四重相关函数的频谱函数)分析,实现高阶矩范围内信号处理,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且双谱含有丰富的冗余信息,采用匹配滤波器进行滤波,该滤波器能够给出最大的信噪比。因此,四重相关匹配滤波技术较之二重相关匹配滤波技术,可以进一步抑制噪声,从而提高信噪比。多正弦窗谱估计在有效改进谱估计的方差性能的同时,能够保证一定的频率分辨能力。附图说明图1是本发明实施例中所使用算法流程图。具体实施方式下面结合附图对本发明的具体实施方式进行描述,以便更好的理解本发明。实施例本实施例中的弱信号目标检测的优化方法,其流程如图1所示,具体步骤如下:(1)读取离散化后的输入信号:x(n)n=0,1,2……N-1,其中N为信号x(t)的采样点数;说明书5(2)对输入信号x(n)进行四重自相关,信号x(n)的四重相关可表示为:)()(mrmrssssxxxx即含噪信号x(n)的四重相关近似等于有用信号s(n)的四重自相关。用Matlab语言实现输入信号x(n)二重相关:R2m=autocorr(xn)四重相关:R4m=autocorr(R2m)(3)计算相关函数)(mrxxxx和输入信号x(n)的频谱:)2exp()()(10kmNjmrRNmxxxxkk=0,1,2……N-1)2exp()()(1

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功