基于AT89S52的直流数字电压表设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1基于AT89S52的直流数字电压表设计摘要:随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。本设计在参阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片A/D574A构建了一个直流数字电压表。本文首先简要介绍了设计电压表的主要方式以及单片机系统的优势;然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计,并给出了硬件电路的设计细节,包括各部分电路的走向、芯片的选择以及方案的可行性分析等。关键词:单片机(MCU);电压;A/D转换;AD574A;ISD1420Abstract:Withthedevelopmentofelectronicalscientifictechnology,electronicalmeasurementbecameatechnicthateveryoneofengagingelectronicalhadtomasterit.What’smore,theprecisionishigherandhigherand,thefunctionismoreandmorepowerful,andvoltage’smeasurementisbestimportant.Primarily,IdesignedaDigital-VoltmeteruseMCUtechnicwithA/D-switchchip(AD574A)baseonlotsofpredecessordesign.Inthisarticle,introducesomemethodsthatdesignDigital-VoltmeterandtheadvantagesofuseMCUsystemtodoitonthefirst;thentreattheprocedureofdesignofdirect-Digital-Voltmeter,containthehardwareandsoftware.Keywords:MicroControllerUnit;Voltmeter;A/Dswitch;AD574A;ISD14201.前言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流或交流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受青睐。本设计从各个角度分析了由单片机组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了程序如何驱动单片机进而使系统运行起来的原理及方法。框图如下:2本设计主要分为两部分:硬件电路及软件程序。而硬件电路又大体可分为单片机小系统电路、分压电路、A/D转换电路、LED显示电路及语音报读电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用C语言编程,利用Keil软件对其编译和仿真,详细的设计算法将会在程序设计部分详细介绍。2.系统硬件电路设计2.1单片机小系统电路2.1.1.单片机芯片选择单片机采用MCS-51系列单片机。由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。而且,它还具有一个看门狗(WDT)定时/计数器,如果程序没有正常工作,就会强制整个系统复位,还可以在程序陷入死循环的时候,让单片机复位而不用整个系统断电,从而保护你的硬件电路。单片机A/D转换器AD574A电压显示器模拟电压输入ISD1420语音芯片量程控制电路系统总框图3AT89S52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,片上Flash允许程序存储器在系统可编程,亦适于常规编程器。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其芯片引脚图如下:图2.1_1AT89S52引脚图2.1.2.单片机管脚说明VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄4存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89S52的一些特殊功能口,如下表所示:P3口引脚第二功能P3.0RXD(串行口输入)P3.1TXD(串行口输出)P3.2INT0(外部中断0输入)P3.3INT1(外部中断1输入)P3.4T0(定时器0外部脉冲输入)P3.5T1(定时器1外部脉冲输入)P3.6WR(外部数据存储器写脉冲输出)P3.7RD(外部数据存储器读脉冲输出)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。52.1.3.单片机小系统电路连接电路连接图如下图:图2.1_2单片机小系统2.2A/D转换器与单片机接口电路2.2.1.A/D转换器芯片选择A/D转换器是模拟量输入通道中的一个环节,单片机通过A/D转换器把输入模拟量变成数字量再处理。随着大规模集成电路的发展,目前不同厂家已经生产出了多种型号的A/D转换器,以满足不同应用场合的需要。如果按照转换原理划分,主要有3种类型,即双积分式A/D转换器、逐次逼近式A/D转换器和并行式A/D转换器。目前最常用的是双积分和逐次逼近式。双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点,比如ICL71XX系列等,它们通常带有自动较零、七段码输出等功能。与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0808、ADC0809等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送单片机进行分析和显示。本设计中,要求精度小于0.1%,则必须选用分辨率大于8位的芯片,如10位、12位、14位或16位A/D转换器,比如AD573、AD574A、ADC1140等。本电路采用AD574A。6AD574A是美国AnalogDevice公司在AD574的基础上改进过的一种完全12位单片A/D转换器。它采用逐次逼近型的A/D转换器,最大转换时间为25us,转换精度为0.05%,所以适合于高精度的快速转换采样系统。芯片内部包含微处理器借口逻辑(有三态输出缓冲器),故可直接与各种类型的8位或者16位的微处理器连接,而无需附加逻辑接口电路,切能与CMOS及TTL电路兼容。AD574A采用28脚双列直插标准封装,其引脚图如下:图2.2_12.2.2.A/D转换器管脚说明A/D574A有5根控制线,逻辑控制输入信号有:A0:字节选择控制信号。CE:片启动信号。/CS:片选信号。当/CS=0,CE=1同时满足时,AD574才处于工作状态,否则工作被禁止。R/-C:读数据/转换控制信号。12/-8:数据输出格式选择控制信号。当其为高电平时,对应12位并行输出;为低电平时,对应8位输出。当R/-C=0,启动A/D转换:当A0=0,启动12位A/D转换方式;当A0=1,启动8位转换方式。当R/-C=1,数据输出,A0=0时,高8位数据有效;A0=1时,低4位数据有效,中间4位为0,高4位为三态。输出信号有:STS:工作状态信号线。当启动A/D进行转换时,STS为高电平;当A/D转换结束时为7低电平。则可以利用此线驱动一信号二极管的亮灭,从而表示是否处于A/D转换。其它管脚功能如下:10Vin,20Vin:模拟量输入端,分别为10V和20V量程的输入端,信号的另一端接至AGND。DB11~DB0:12位数字量输出端,送单片机进行数据处理。REFOUT:10V内部参考电压输出端。REFIN:内部解码网络所需参考电压输入端。BIPOFF:补偿校正端,接至正负可调的分压网络,0输入时调整数字输出为0;AGND:接模拟地。DGND:接数字地。2.2.3.AD574A与单片机接口由于对AD574A8、10、12引脚的外接电路有不同连接方式,所以AD574A与单片机的接口方案有两种,一种是单极性接法,可实现输入信号0~10V或者0~20V的转换;另一种为双极性接法,可实现输入信号-5~+5V或者-10~+10V之间转换。我们采用单极性接法,电路图如下2.2_2:图2.2_2AD574A与单片机接口电路8根据芯片管脚的原理,无论启动、转换还是结果输出,都要保证CE端为高电平,所以可以将单片机

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功