1目录一、设计任务和要求..........................................................2二、系统方案................................................................2三、核心元件的功能..........................................................23.1、AT89C51............................................................23.1.1功能特性概括:..................................................33.1.2管脚说明:.....................................................33.2、DS18B20的主要特性..................................................53.2.1DS18B20的内部结构.............................................63.2.2DS18B20工作原理...............................................6四、理论分析及程序流程图....................................................9五、电路与程序设计.........................................................105.1、电路图............................................................105.2、程序..............................................................11六、结果分析...............................................................16七、总结...................................................................17八、参考文献...............................................................172一设计任务和要求1、利用DS18B20实现温度采集,并用数码管显示。能实现温度上下限的设置,并能够超限报警(用proteus实现)2、硬件设计部分,根据设计的任务选定合适的单片机,根据控制对象设计接口电路。设计的单元电路必须有工作原理,器件的作用,分析和计算过程;3、软件设计部分,根据电路工作过程,画出软件流程图,根据流程图编写相应的程序,进行调试并打印程序清单;4、原理图设计部分,根据所确定的设计电路,利用Protel工具软件绘制电路原理图,提供元器件清单。5、计算说明书部分包括方案论证报告打印版或手写版,程序流程图具体程序等6、图纸部分包括具体电路原理图打印版7、设计要求还包括利用一天时间进行资料查阅与学习讨论,利用5天时间在实验室进行分散设计,最后三天编写报告。最后一天进行成果验收。二系统方案方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。三核心元件的功能3.1AT89C51AT89S51美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4KBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及AT89C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元。单片机AT89S51强3大的功能可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89C51芯片的引脚结构如图1所示:图13.1.1功能特性概括:AT89S51提供以下标准功能:40个引脚、4KBytesFlash片内程序存储器、128Bytes的随机存取数据存储器(RAM)、32个外部双向输入/输出(I/O)口、5个中断优先级2层中断嵌套中断、2个数据指针、2个16位可编程定时/计数器、2个全双工串行通信口、看门狗(WDT)电路、片内振荡器及时钟电路。此外,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式,空闲模式,CPU暂停工作,而RAM、定时/计数器、串行通信口、外中断系统可继续工作。掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求3.1.2管脚说明:P0口:P0口为一个8位漏级开路双向I/O口,也即地址/数据总线复用口。作为输出口用时,能驱动8个TTL逻辑门电路。对端口写“1”时,被定义为高阻输入。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要4求外接上拉电阻。P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在Flash编程和程序校验期间,P1接收低8位地址。部分端口还有第二功能,如表1所示:表1P1口部分引脚第二功能P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据寄存器(例如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。在Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3口:P3口是一个带有内部上拉电阻的双向8位I/O口,P3口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写“1”时,它们被内部的上拉电阻拉高并可作为输入端口。作输入口使用时,被外部信号拉低的P3口将用上拉电阻输出电流(IIL)。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表2所示:P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。端口引脚第二功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.20INT(外中断0)端口引脚第二功能P1.5MOSI(用于ISP编程)P1.6MISO(用于ISP编程)P1.7SCK(用于ISP编程)5P3.3INT1(外中断1)P3.4T0(定时/计数器0)P3.5T1(定时/计数器1)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)表2P3口引脚第二功能RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上的高电平时间将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRTO位(地址8EH)可打开或关闭该功能。DISRTO位缺省为RESET输出高电平打开状态。ALE/:当访问外部存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部寄存器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。值得注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只要一条MOVX和MOVC指令才会激活ALE。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。PSEN:程序存储允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。当访问外部数据存储器时,没有两次有效的PSEN信号。EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需要注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端保持高电平(接VCC端),CPU则执行内部程序存储器中的指令。Flash存储器编程期间,该引脚用于施加+12V编程电压(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入端。XTAL2:反向振荡放大器器的输出端。3.2DS18B20的主要特性(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理6器与DS18B20的双向通讯(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快(8)测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。3.2.1DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20引脚定义:(1)GND为电源地;(2)DQ为数字信号输入/输出端;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)图23.2.2DS18B20工作原理7DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新