同济大学遗传学课件总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

遗传学总结第一章绪论遗传(heredity,inheritance)指生物世代间相似的现象(名词)或指生物性状或基因(注意二者的不同)从上代向下代的传递过程(动词)变异(variation)生物个体间的差异(名词)生物的性状或基因从上代向下代传递时发生变化的过程(动词)(并非所有的变异都可以遗传!)简述遗传和变异的矛盾与统一•遗传和变异现象是自然界普遍存在的生命活动的基本特征•遗传决定了物种的基本特性,变异决定了种内个体间差异•遗传(的稳定)是相对的,变异是绝对的•变异积累达到或超过一定“阈值”就可能成为新物种的来源•变异给进化提供丰富素材,遗传使变异得以积累和传递。如果性状不存在变异,遗传将只是简单的重复,如果变异不能遗传,也就失去其遗传学意义,生物同样不能够进化,都是生物的进化和发展不可缺少的因素第二章孟德尔遗传定律实验设计:1.实验对象:豌豆2.对具有不同单一性状的纯系(true-breedingorpure-breedingstrains)进行遗传杂交—-单因子杂交(monohybridcross)3.反复试验验证4.数学方法分析5.理论归纳显性定律(ThePrincipleofDominance):在杂合子中,一个等位基因可能掩盖另一个等位基因的存在。分离定律(ThePrincipleofSegregation):在杂合子中,两个不同等位基因在配子形成时会彼此分离。6.定律验证-测交(Testcrosses)双因子杂交(dihybridcross)自由组合(独立分离)定律(ThePrincipleofIndependentAssortment):不同对基因在形成配子时,不同基因的等位基因自由组合(或称为彼此独立分离)限制条件:控制性状的两对或两对以上的非等位基因位于非同源染色体上或在同源染色体上但距离较远。7对基因位于7对不同染色体上的几率:1x6/7x5/7x4/7x3/7x2/7x1/7=0.0061种表型分析方法:1.棋盘法2.分枝法3.概率法二项式概率:第四节:孟德尔定律的扩展基因型与表型之间的关系绝不是简单的“一对一”的“决定”关系一、等位基因间的相互作用----显隐性关系表现的相对性完全显性(completedominance)不完全显性(incomplete/partiallydominance):杂合子的表现型介于显性纯合子与隐性纯合子之间。例1:金鱼草花色的遗传例2:豌豆种子的“圆”和“皱”例3:豌豆的开花时间外显率(penetrance):指特定环境中某显性基因在杂合状态(或隐性基因在纯合状态)下显示预期表型的比率,一般用%表示。外显率为100%时,称完全外显;低于100%时属于不完全外显。表现度(expressivity):具有相同基因型的个体之间表达的变化程度。用于描述正常性状或疾病在个体间表现程度或症状的轻重程度的差异。并显性(codominance):人类的MN血型,首先由Landsteiner发现,为继ABO血型后被检出的第二种与ABO血型独立遗传的血型。二、复等位基因(multiplealeles)一个基因座有多于2个的等位形式。例一:人血型例2:家兔毛色的复等位基因决定•在一个复等位基因系列中,可能出现的基因型的数目取决于复等位基因的数目。如果有n个复等位基因,就会有n+[n(n-1)/2]种可能的基因型,其中有n种纯合子、n(n-1)/2种杂合体•但对于一个个体而言,只能其中的两个基因,且分离原则与一对等位基因相同三、致死基因(lethalgene):Recessivelethalgene:杂合时不影响个体的生活力,但在纯合时有致死效应。四、非等位基因间的相互作用:基因互作、基因互补、抑制基因、上位效应、叠加效应基因互作:相对性状由多对基因共同控制基因互补:两对基因都存在时表现某性状两对基因控制同一对相对性状而非两对。抑制基因:基因I本身不能独立表现任何可见的表型效应,但可以完全抑制其他非等位基因的作用。上位效应:封闭基因作用。没有有功能的酶,阻断了从白色底物向中间产物的转变,不能合成任何有颜色的产物。1)隐性上位;2)显性上位•两对基因共同控制一对表型;•上位基因的作用类似于抑制基因,但同时还控制其他表型。叠加效应:对同一性状的表型具有相同效应的非等位基因五、基因作用与环境的关系基因所控制的性状必须在一定环境下才能实现环境条件不同也可使性状发生变异某基因决定了某性状的反应规范第3章:连锁遗传分析与染色体作图性染色体:两条染色体在雌、雄个体中形态不同,在做核型分析时无法象一般的染色体一样进行配对,把这两条染色体叫做性染色体,相对的可以配对的染色体叫做常染色体性别决定:对动植物的性别分化作出预定的方式或机制性别分化:动植物性别差别化发育的过程性别转换:已经发育成某种性别的个体发生性别逆转的现象XO型性别决定(蚱蜢,蝗虫):雌性为同配性别(XX),雄性为X部分二倍体XO染色体倍性决定(蜜蜂等膜翅目昆虫):雄性单倍体,减数分裂特殊形式:单极纺锤体,无核的细胞质芽体基因型性别决定(玉米和葫芦科部分植物)环境条件与性别决定性别分化是胚胎发育或个体发育的结果。实质上和其他性状一样,也是基因有选择地顺序表达的结果。性别决定使得该个体具有发育成为某种性别的遗传组成或潜力,但能否发育成为该性别,还要受到许多因素的制约:环境条件与性别分化;激素与性别分化;性转换以XY型性别决定类型为例,基因位于X染色体上时为X-连锁的遗传,位于Y染色体上时称为限雄遗传;伴性遗传往往指X-连锁的遗传X-伴性遗传特点:性状的遗传方式与性别有关X染色体连锁的隐性性状表现为交叉遗传发病率有明显的性别差异,如果群体中致病基因频率为q,则男性发病率为q,女性发病率为q2致病基因难于淘汰。基因平衡理论的提出果蝇的性别决定于X染色体与常染色体倍数之比;果蝇的性别分化取决于X染色体上决定雌性的基因于常染色体上决定雄性的基因之间的平衡基因平衡理论的直接证据:雌雄嵌合体剂量补偿效应:指在XY性别决定机制的生物中,使性连锁基因在两种性别中有相等或相近的有效剂量的遗传效应。剂量补偿效应有两种机制:•X染色体的转录速率不同--果蝇•雌性中有一条X染色体失活--哺乳动物和人第四章连锁分析重组合型配子的产生——交叉假说:1.在减数分裂前期,尤其是双线期,配对中的同源染色体不是简单地平行,而是在非姊妹染色单体的某些位点上显出交叉缠绕的图象,称为交叉,是同源染色体间对应片段发生交换的地方。2.相互连锁的两个基因位于染色体的不同位置,如果这两个位置之间发生染色体交换,就会导致这两个连锁基因的重组。•显然,染色体越长,显微镜下看到的交叉也就越多,表明发生交换的点就可能越多。连锁群的概念:凡是伴性遗传的基因,相互之间都是连锁的。重组频率:重组型配子在所有类型配子中所占比例。——重组值重组频率RF=重组合个体数目/(重组合个体数目+亲组合个体数目)•交换值和重组率表示两个不同的概念,当两个基因间没有双交换发生时,这两个概念的区别不明显;当有双交换发生时,它们的值可能不同•交换值等于交叉频率的一半。连锁和交换是遗传学的第三条基本定律——处于同一染色体上的两个或两个以上基因在形成配子时同时进入一个配子的概率大于分别进入两个配子的概率,重组类型配子的产生是由于非姊妹染色单体之间发生了局部交换的结果。特点:两侧基因之间的重组值低于其实际交换值。双交换频率明显低于单交换影响交换发生的因素:–基因在染色体上的位置(内因)–性别:小鼠的交换值雌性大于雄性,果蝇中雄性为完全连锁,无交换发生(雌蚕同),实际上,凡是由性染色体决定性别的生物中,异配性别的交换值都较小——凡是较少发生交换的性别是异配性别——霍尔丹定律–联会复合体是形成交换的重要结构–温度、射线、化学物质等•两个基因距离越远,它们之间的重组率越大,反之越小。三点测交确定3个基因之间的距离,需要对两两基因之间的重组值分别测定。如果有合适的三隐性个体,就可以通过一次实验而获得上述实验数据:这就是三点测交重组值计算的偏差也是由于双交换的的存在:对于两端的基因而言,在它们之间发生双交换的后果是:等于在该二基因之间没有发生交换。非顺序四分子分析RF=1/2T+NPD\T+NPD+PD若RF=50%,说明该2基因不连锁遗传分析方法1.如果性状只出现在男性,可定位基因于Y染色体上2.如果性状出现的频率与性别有关,出现交叉遗传,可定位基因于X染色体3.外祖父法:——对于X连锁的基因,确定2基因间距离对于2个X连锁的基因,计算重组率需要知道母亲的基因型是否为双杂合体然后根据杂合体母亲所生的儿子的表型计算该2基因的重组情况。母亲的基因型可以由外祖父的表型推出,故称为外祖父法。•利用异常染色体定位法:–基因剂量效应法:–染色体缺失定位法–DNA介导的基因定位•克隆基因定位法•原位杂交法•人类染色体作图–RFLP标记–DNA指纹法(VNTR标记)–RFLP图谱–STS图谱–EST图谱第六章染色体变异将一个细胞内的染色体按照一定的顺序排列起来所构成的图象称为该细胞的核型(karyotype),确定其是否与正常核型一致的过程,称为核型分析(karatypeanalysis)。用一些特定的染料和处理技术,来使染色体出现深浅或明暗带纹以鉴别染色体的技术称为染色体显带技术(chromosomebanding)。显带染色体模式图和命名原则界标(landmark):确认每一条染色体上具有的稳定和有显著形态学特征的指标,包括染色体两臂顶端、着丝粒和明显的带。区(region):位于相邻两界标之间的染色体区域。带(band):指显带处理后染色体呈现深浅或明暗的部分,是连续的,没有非显带区。FISH(fluorescenceinsituhybridization)技术:荧光标记的原位杂交技术染色体组:一种生物的配子中所含有的染色体数目称为该物种的单倍染色体数,用n表示。单倍体(haploid,n):细胞核中含有一个完整染色体组的生物体或细胞。双倍体(diploid,2n)单倍体(haploid)单倍体在减数分裂时,染色体为单价体(没有可以配对的同源染色体进行联会),从而随机地分向两极,形成的配子是高度不育的。形成可育配子的概率只有(1/2)n育种优势:可通过染色体加倍获得双单倍体,遗传稳定且表型正常,被广泛应用于植物的花药培养。目的是为了在很短的时间内获得纯系,缩短育种周期。多倍体(polyploid):具有三个或三个以上染色体组的整倍体。同源多倍体(autopolyploid)同源多倍体是指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍得到异源多倍体(allopolyploid)异源多倍体是指增加的染色体组来自不同物种,一般是由不同种、属间的杂交种染色体加倍形成的。细胞与细胞核体积增大;组织器官(叶片、花朵等)巨大化,生物个体更高大粗壮;成熟期延迟、生育期延多倍体的形成途径1.未减数配子结合2.体细胞染色体数加倍最常用的方法:秋水仙素处理分生组织1)不育的多倍体(倍性为奇数)特征:配子育性降低甚至完全不育。1)同源染色体配对;2)配子中的染色体总数变化从0到3n不等;3)非整倍性配子因染色体不平衡,受精后死亡;4)不育性通过无性繁殖来克服,如插枝、嫁接等。2)可育的多倍体育性的重要条件:配子中具有完整的染色体组。来自不同种的染色体很少会干扰彼此在减数分裂中的分离。因此,异源多倍体体细胞内的染色体组成对存在,同源染色体能正常配对形成二价体,并分配到配子中去,因而其遗传表现与二倍体相似3)组织特异性多倍体和多线性在某些生物中,某些特定组织在发育到一定阶段会成为多倍体。这种多倍化可能是因为对染色体及其所携带的基因多拷贝的需要的一种反应。比如:人体中的肝、肾组织(四倍体细胞);果蝇的唾液腺;多线染色体(polytenechromosome):指线缆状的巨大染色体,见于某些生物的特定细胞中。由核内DNA复制产生的多股染色单体平行排列而成。该结构光镜下可见。体细胞联会(Somaticsynapsis):体细胞在有丝

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功