周期函数的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014届本科毕业论文(设计)学院名称:数学科学学院专业名称:数学与应用数学学号:1011010301学生姓名:陈胜昭指导教师姓名(职称):李西洋教务处制二〇一四年五月题目周期函数的应用目录一、绪论二、周期函数的定义三、周期函数的图像四、周期函数的性质五、周期函数的模型六、周期函数的算法七、周期函数的应用(一)在三角函数中的应用(二)在数列中的应用(三)在工程科学中的应用(四)在生活中中的应用八、总结参考文献致谢作者介绍声明广西师范学院2014届本科毕业论文1周期函数的应用专业名称:数学与应用数学姓名:陈胜昭[摘要]:周期函数是数学领域中很重要的一部分,它具有一定的学术价值,所以周期函数具有它的存在价值。在中学时候我们已经学习过有关周期函数的定义,一些性质以及定理。本文将进一步讨论与周期函数有关的定义定理以及模型与应用。关键词:周期函数周期模型算法应用EnglishAbstractAbstract:Theperiodicfunctionisaveryimportantpartinthefieldofmathematicsinmiddleschool,whenwehavelearnedthedefinitionofperiodicfunction,somepropertiesandtheorems.Thispaperwillfurtherdiscussthedefinitionsandtheoremsrelatedtoperiodicfunctionandmodelandapplication.Keywords:periodicfunctionperiodmodelalgorithmapplication前言周期函数,顾名思义,这类函数具有周期性。那人类历史上是否有具有周期性的事物或者现象呢?答案是肯定的。最为常见的就是日历里面的“星期”,人们发现从周一到周日,下一次也是从周一到周日,按照这样一直循环下去,周期性变化,重复出现。古语有云:“周而复始”,说的就是每增加或减少一定的量后,它出现的结果是一样的,也就是又变回了原来的那样。日复一日,每天的24小时,年复一年,春夏秋冬四个季度无限循环下去,无穷无尽。在数学中,如果我们把具有周期性的函数用“周而复始”这个成语来解释的话,那是再合适不过了,用这个成语解释,就不再那么抽象,难以琢磨,反而变得更容易让人理解和接受,所以,后来人们可以算出几万天后的今天是星期几。这就是人们利用周期性来推算出来的。周期函数是数学里面的重要组成部分,具有一定的学术价值,而且周期函数还有利于人们生活水平的提高,因为它还在天文、地理、物理等方面都发挥的重要作用,所以我们要把周期函数的性质,规律,等的都要掌握,让它为人类服务,让我们生活的更好。周期函数的应用2本文将对周期函数的有关问题进行探讨。第2部分给出了周期函数的定义;第3部分研究的是周期函数的图像;第4部分探讨的是周期函数的性质;第5部分讲的是周期函数的算法;第6部分是周期函数的模型;第7部分是周期函数的应用,最后是本文的总结。一、周期函数的定义周期函数一直以来都是教学的重点难点,而且它的定义比较抽象,在不同的书籍有不同的定义。定义1设f(x)是定义在(-∞,+∞)上的函数,若存在常数T≠0,使对一切x∈(-∞,+∞),有f(x+T)=f(x),则称f(x)是以T为周期的周期函数[1]。定义2我们称函数f:D→R(D包含于R)为周期函数,如果存在T0,使得f(x±T)=f(x),并称T为f的一个周期,我们记f的周期的全体为Pf[2]二、周期函数的图像在中学我们已经学习过一些周期函数,也同时学习过一些简单周期函数的图像,包括读图像,和画图像,不同的周期函数有不同的图像,虽然他们的图像都不相同,但是都有一个共同性,就是当“自变量”增大或较少某一值时,函数值会出现相同的结果,这是周期函数区别于其它函数的特点,也是判断是否是周期函数的重要依据。例如函数y=∣x+1∣它的图像在自变量在-1那点增加1,函数值为1,减少1,函数值也为1,这里看似符合周期函数的定义,而实际上这个函数并不是周期函数,因为当我们把自变量再增加1的时候函数值就不再是1了,而是2,也就是说两次自变量都是增加相同的1,但是得到的函数值是不同的,所以它并不符合周期函数的定义,不是周期函数。三角函数中也有很多具有“周期性”的函数。最常见的有正弦函数、余弦函数。例如函数sinx,它是否是周期函数?同上面一样,要判断它是否是周期函数,关键是看它是否符合周期函数的定义。因为sin(-π)=0,sin(-0.5π)=-1,sin0=0,sin0.5π=1,sinπ=0,sin1.5π=-1广西师范学院2014届本科毕业论文3以此类推,一直下去,可以看出,从-π到π,函数值出现重复的现象,从-0.5π到1.5π,函数值也出现重复的现象。而-π到π,-0.5π到1.5π之间,都是相差2π,也就是说自变量的变化量是2π的时候,函数的值是一样的,所以该函数是周期函数,而且周期为2π。同样,我们可以求出余弦函数cosx也是周期函数,而且周期也为2π。我们同样画出该函数的图像,在这里,我把它们的图像画到一起,这样是为了比较的方便。观察正弦的函数图像,可知,它的对称轴为0、π、2π……kπ(k为整数),k=0时同样适用,每相邻两个对称轴之间的距离为π,而正弦函数sinx的周期是2π,π正好2π的一半,也就是说sinx的周期正好是它的每两个对称轴之间距离的2倍。三周期函数的性质1、一个函数f(x)的所有周期中最小的那一个正数,叫做这个函数f(x)的最小正周期。2、若A(≠0)是f(x)的任意一个周期,则-A也是f(x)的周期。证明:因为A是f(x)的周期,所以f(x+A)=f(x),所以f[x+(A-A)]=f[x+(-A)]=f(x))。因而周期函数必定有正周期。3、若A是周期函数的f(x)的一个周期,则A的整数倍都是该函数的周期,即nA也是f(x)的周期。证明:因为A是f(x)的周期,所以f(x+A)=f(x),f(x+A+A)=f(x+A)=f(x)f(x+A+A+A)=f(x+A+A)=f(x+A)=f(x)…………f(x+nA)=f(x+A)=f(x)所以nA是函数f(x)的周期。4、若A1、A2都是f(x)的周期,则A1±A2也是f(x)的周期。证明:因为A1、A2都是f(x)的周期,根据周期函数的定义,有f(x)=f(x+A1)和f(x)=f(x+A2)即f(x+A2)=f)(x)=f(x+A1)周期函数的应用4在这里,我们不妨设B=x+A1,于是有f(B)=f(B+A2)=f(x+A1+A2)所以(A1+A2)是f(x)的周期。同样,对于A1-A2的时候,有f(x)=f(x-A2)设B=x+A1,于是有f(B)=f(B+A2)=f(x+A1-A2)所以(A1-A2)是f(x)的周期。5、周期函数的周期T未必是正数未必有正周期]0,(,sinxxy当时,2T是函数的一个周期,因为sinx=sin(x-2π)=sin(x-4π)=……=sin(x-2nπ)(n为正整数)故xysin,在]0,(x的时候也是周期函数,在这里我们假设)(xf有一个正周期,设为T1,则当)0,1(Tx时,]0,(1Tx,这与题目]0,(x矛盾,不存在正周期T1,所以]0,(,sinxxy不存在正周期。6、周期函数的周期不止一个比如周期函数的一个周期是4,那么在定义域范围内8,、12、16也必定是他的周期。比如三角函数cos4x在R上的最小正周期是π/2,那么π,2π、3π也是它的周期。容易证明,cos4(x+π)=cos4(x+2π)=cos4(x+3π)=……cos4(x+nπ),所以π也是cos4x的一个周期,同理可证,2π、3π都是它的周期,于是有周期函数的周期不唯一。四、周期函数的模型f(x+a)=[1-f(x)]/[1+f(x)],则xf是以2Ta为周期的周期函数.函数()yfxxR的图象关于两点0,Aay、0,Bbyab都对称,则函数()fx是以2ba为周期的周期函数;12、若偶函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且2a是它的一个周期。1当他们的周期都是有理数的时候,周期函数加上周期函数还是周期函数。f(x),g(x)都是周期函数,T1为f(x)的周期,T2为g(x)的周期,T1、T2都是有理数,则f(x)+g(x)也是周期函数。广西师范学院2014届本科毕业论文52周期函数加上非周期函数不是周期函数3非周期函数加上非周期函数是无法确定是否还为周期函数的4周期函数乘上周期函数还是周期函数5周期函数乘上非周期函数不是周期函数6非周期函数乘上非周期函数是无法确定是否是周期函数的。例如,证明y=sinx*cosx是否是周期函数。证:有sin2x=2sinx*cosx可知y=sinx*cosx=1/2sin2x,T=2π/2=π,所以该函数的周期为π。7、周期函数乘以周期函数还是周期函数当且仅当原来两个周期函数的周期之比为一有理数。证明:设y1=f1(x),其周期为T1;y2=f2(x),其周期为T2;因为这两个函数的周期之比为一有理数,所以,T1/T2是一个有理数,令T1/T2=b/a,其中a、b都是整数,因为所有有理数都可以表示成a/b的形式,当a、b都是整数的时候。又设y3=f1(x)*f2(x),令T=a*T1,于是有f1(x+T)*f2(x+T)=f1(x)*f2(x)=y3但是不能说两个周期函数的乘积的最小正周期周期就等于它们周期的乘积。例如,y=sinx*cosx,其中sinx,cosx都是以2π为周期的周期函数,那么y=sinx*cosx的最小正周期是否就是4π呢?这显然是错误的,因为由sin2x=2sinx*cosx,可知y=sinx*cosx=1/2sin2x,而1/2sin2x的最小正周期是π,而不是4π。五、求解周期函数的周期下面我们来求几种常见周期函数的周期问题1、f(x)定义域为R,对任意x∈R及y≠0,f(x+y)=f(xy-x/y),且f(x)为周期函数,求出该函数的一个正周期。分析:由周期函数的定义可知,一定会存在T≠0,使得对于任意的x∈R,必有f(x+T)=f(x)。此处关键是如何化f(xy-x/y)。解:因为f(x+T)=f(xT-x/T)=f[x(T-1/T)]在这里,我们不妨设T-1/T=1,于是有f[x(T-1/T)]f(x)所以我们解出T-1/T=1中的T即可。由T-1/T=1解得,周期函数的应用6T1=(1+5)/2,T2=(1-5)/2。又因为现在我们要求的事正周期,所以取T1=(1+5)/2。即f(x)的一个正周期为T=(1+5)/2。高中我们已经学过正弦函数周期怎么算如y=sinx,有公式T(周期)=2π/w(其中w为x前面的系数)sinx周期是2π,因为x前面系数是1,T=2π/1=2π。余弦函数的周期公式也同样是T(周期)=2π/w(其中w为x前面的系数)y=sinx,y=cosx,前面已经介绍过,这两个都是以2π为最小正周期周期的周期函数。但是具体是怎么求出来的呢,现在我们就用公式来验证一下。y=sinx和y=cosx的x前面的系数都是1,所以得T=2π/1=2π。所以我们前面所求得的周期是正确的。同样是三角函数,y=tanx的最小正周期却不是2π,而是π。比如现在我们要算y=cos(x/3)的最小正周期因为y=cosx的最小正周期为2π所以y=cos(x/3+2π)=cos((x+6π)/3)所以所求的最小正周期为6π问题2:cos2x的最小正周期是多少?(1)分析:首先要根据周期函数的定义,找到一个最小的正数T,对于函数定义域内的每一个x的值都能使cos2(x+T)=cos2x成立,同时考虑到余弦函数y=cosx的周期是2.解:∵cos2x=cos(2x+2π)=cos2(x+π),即cos2(x+π)=cos2x∴当自变量由x增加到x

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功