1因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是[]A.)7(722aababbaB.)1)(2(36332xxyyxyxC.)34(26822xyxyzyxxyzD.)32(26422cbaaacaba2.多项式)2()2(2nmnm分解因式等于2A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是A.bnaybmaxnmbyxa)()(B.1)(12222bababaC.)32)(32(9422babaaaD.8)7(872xxxx4.下列各式中,能用平方差公式分解因式的是A.22baB.22baC.22baD.22)(ba5.若22169ymxyx是一个完全平方式,那么m的值是A.-12B.±24C.12D.±127.若a2+a=-1,则3432234aaaa的值为A.8B.7C.10D.128.已知06222yxyx,那么x,y的值分别为A.x=1,y=3B.x=1,y=-3C.x=-1,y=3D.x=1,y=-39.把16)3(8)3(2242mmmm分解因式得A.24)2()1(mmB.)23()2()1(222mmmmC.22)1()4(mmD.2222)23()2()1(mmmm10.把6072xx分解因式,得A.(x-10)(x+6)B.(x+5)(x-12)C.(x+3)(x-20)D.(x-5)(x+12)11.把22823yxyx分解因式,得A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)312.把22338baba分解因式,得A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把2324xx分解因式,得A.)1)(2(22xxB.)1)(1)(2(2xxxC.)1)(2(22xxD.)1)(1)(2(2xxx14.多项式abbxaxx2可分解因式为A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其2x项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是A.12112xx或12112xxB.122xx或122xxC.1242xx或1242xxD.以上都可以16.下列各式123xxx,xxyyx2,1222yxx,222)12()3(xxx中,不含有(x-1)因式的有A.1个B.2个C.3个D.4个17.把2236129yxyx分解因式为A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是A.))((2cabaabacbcaB.)3)(5(1535abbaabC.)2)(3(6232xyxyxxyxD.)13)(13(91622yxyxyxyx19.已知2222bxxa是完全平方式,且a,b都不为零,则a与b的关系为4A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对44x进行因式分解,所得的正确结论是A.不能分解因式B.有因式222xxC.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把2242242babbaa分解因式为A.222)(abbaB.))((2222abbaabbaC.))((2222abbaabbaD222)(abba22.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.yxxyx2632B.yxxyx2632C.yxxyx2632Dyxxyx263223.2864ba因式分解为A.))(64(44babaB.)4)(16(22babaC.)8)(8(44babaD.)8)(8(42baba24.2222)(4)(12)(9yxyxyx因式分解为A.2)5(yxB.2)5(yxC.)23)(23(yxyx)D.2)25(yx25.1)23(2)32(2yxxy因式分解为A.2)123(yxB.2)123(yxC.2)123(yxD.2)123(yx26.把2222)(4)(4)(bababa分解因式为A.2)3(baB.2)3(abC.2)3(abD.2)3(ba27.把2222)())((2)(cabcbcaabcba分解因式为A.2)(bacB.2)(bacC.22)(bacD.)(2bac528.若kyxxy2244有一个因式为(1-2x+y),则k的值为A.0B.1C.-1D.429.分解因式yaxbybxa22224343,正确的是A)43)((22yxbaB(a-b)(a+b)(3x+4y)C)43)((22yxbaD.(a-b)(a+b)(3x-4y)30.分解因式2228242cbaba,正确的是A.2(a+b-2c)B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.qpqpm)(2;2.abcacbcaba)(;3.334422xyyxyx;4.2232222)(cabbcacbaabc;5.)()()(222bacacbcba;6.1)2(2)2(22xxxx;7.2236)(12)(zzxyyx;8.22484babaxx;9.))((2)()(22bxaybyaxbxaybyax;10.222222)1()1()1)(1(baba;11.22)1(9)1(xx;12.222222)(4cbaba;13.aacacab4422;14.nynx33;15.125)(3yx;16.33)23()23(nmnm;17.)()(226226xyyyxx;18.1)(83yx;19.3333)(cbacba;20.2234yxyx;621.144182xx;22.8224xx;23.171824mm;24.xxx8235;25.25821619xxx;26.24)7(10)7(222xxxx;27.2)1(6)1(75aa;28.2)1)((22xxxx;29.142222xyyxyx;30.(x-1)(x-2)(x-3)(x-4)-48;31.yxyx22;32.baaxbxbxax3322;33.124mm;34.2222cacba;35.baaba23;36.44)(625bab;37.24426633yxyxyx;38.35424422yxyxyx;39.22244babam;40.22255nmnmnm.四、证明(求值):1.已知a+b=0,求223322abbaba的值.3.证明:))(()()(222222dcbaadbcbdac.4.已知a=k+3,b=2k+2,c=3k-1,求acbcabcba222222的值.5.若)4)(3(2xxnmxx,求2)(nm的值.6.当a为何值时,多项式24435722yxayxyx可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与229yx的大小.