课后答案网第五章谓词逻辑习题5.11.a)每个自然数都有唯一的后继;解:“每个”是全称的概念;“自然数”需引进一个特性谓词;“有”表示存在;“唯一”表示所有具有该性质的元素均相等(即若x具有该性质,y也具有该性质,则x等于y);“后继”用谓词表示。于是,可令:N(x):x是自然数;Q(x,y):y是x的后继;E(x,y):x等于y;则上述命题可以符号化为:(x)(N(x)(y)(Q(x,y)(z)(Q(x,z)E(y,z))b)没有以0为后继的自然数;解:“没有”表示不存在;“自然数”用特性谓词表示;“后继”用谓词表示。于是,可令:N(x):x是自然数;Q(x,y):y是x的后继;则上述命题可以符号化为:(x)(N(x)Q(x,0))注意:①对于引进的特性谓词,在全称量词约束下要用逻辑联结词“”,在存在量词约束下要用逻辑联结词“”。②“唯一”概念的符号化。2.a)存在唯一的偶素数;解:“存在”是存在量词的概念;“唯一”可参照上题;“偶数”、“素数”用谓词表示。于是,可令:E(x):x是偶数;S(x):x是素数;R(x,y):x等于y;则上述命题可以符号化为:(x)(E(x)S(x)(y)(E(y)S(y)R(x,y))b)没有既是奇数又是偶数的数;解:“没有”表示不存在;“奇数”、“偶数”、“数”用谓词表示。于是,可令:O(x):x是奇数;E(x):x是偶数;Q(x):x是数;课后答案网则上述命题可以符号化为:(x)(Q(x)O(x)E(x))3.a)所有可证明的算术命题都是真的;b)存在真的但不可证明的算术命题;c)对于任意的三个算术命题x,y,z,若z=xy且z是可证明的,则x是可证明的或y是可证明的;d)对于任意的三个算术命题x,y,z,若x是真的并且z=xy,则z是真的;4.a)对任意整数x,y和z,xz是xy且yz的必要条件;解:“任意”是全称的概念;“整数”需引进一个特性谓词;“”用谓词表示;“必要条件”用逻辑联结词来表示。于是,可令:I(x):x是整数;L(x,y):xy;则上述命题可以符号化为:(x)(y)(z)(I(x)I(y)I(z)(L(x,y)L(y,z)L(x,z)))b)对任意整数x,若x=2,则3x=6;反之亦然;解:“任意”是全称的概念;“整数”需引进一个特性谓词;“=”用谓词表示;“”用函词表示。于是,可令:(2、3、6可以用常元表示)I(x):x是整数;E(x,y):x=y;f(x,y):xy;则上述命题可以符号化为:(x)(I(x)(E(x,2)E(f(3,x),6))(E(f(3,x),6)E(x,2)))或(x)(I(x)(E(x,2)E(f(3,x),6)))习题5.21.b)除了最后一个x是自由出现外,其它的6次x的出现都是约束出现。第一个(x)的辖域为下面的划线部分:(x)(P(x)(x)Q(x))((x)P(x)Q(x))第一个(x)的辖域为下面的划线部分:(x)(P(x)(x)Q(x))((x)P(x)Q(x))第二个(x)的辖域为下面的划线部分:(x)(P(x)(x)Q(x))((x)P(x)Q(x))课后答案网)T;b)F;c)F;d)T;e)T;f)T。以a)为例:解:因为P(a,a)为T,所以(y)P(a,y)为T;因为P(b,b)为T,所以(y)P(b,y)为T;因为(y)P(a,y)和(y)P(b,y)均为T,所以(x)(y)P(x,y)也为T。3.a)F;b)T;c)F。4.a)T;b)F;c)T。习题5.31.a)(x)(P(x)Q(x))((x)P(x)(x)Q(x))为永真式。证明:给定(x)(P(x)Q(x))((x)P(x)(x)Q(x))在论域D上的任意解释I,如果(x)P(x)(x)Q(x)在I下为假,则(x)P(x)在I下为真,并且(x)Q(x)在I下为假。因为(x)Q(x)在I下为假,所以存在cD使Q(c)在I下为假。因为(x)P(x)在I下为真,所以P(c)在I下为真。因此,P(c)Q(c)在I下为假。所以,(x)(P(x)Q(x))在I下为假。于是,(x)(P(x)Q(x))((x)P(x)(x)Q(x))为永真式。b)((x)P(x)(x)Q(x))(x)(P(x)Q(x))不是永真式。解:取上述合式公式的解释I如下:i)论域D={a,b};ii)P(a)P(b)Q(a)Q(b)_____________________________FTFF则(x)(P(x)Q(x))在I下为假,((x)P(x)(x)Q(x))在I下为真。所以,((x)P(x)(x)Q(x))(x)(P(x)Q(x))在I下为假。c)((x)P(x)(x)Q(x))(x)(P(x)Q(x))为永真式。证明:给定((x)P(x)(x)Q(x))(x)(P(x)Q(x))在论域D上的任意解释I,如果(x)(P(x)Q(x))在I下为假,则存在cD使P(c)Q(c)在I下为假。即P(c)在I下为真并且Q(c)在I下为假。因为P(c)在I下为真,所以(x)P(x)在I下为真。因为Q(c)在I下为假,所以(x)Q(x)在I下为假。所以,(x)P(x)(x)Q(x)在I下为假。于是,((x)P(x)(x)Q(x))(x)(P(x)Q(x))为永真式。课后答案网)(x)(P(x)Q(x))((x)P(x)(x)Q(x))不是永真式。解:取上述合式公式的解释I如下:i)论域D={a,b};ii)P(a)P(b)Q(a)Q(b)_____________________________FTFT则(x)(P(x)Q(x))在I下为真,((x)P(x)(x)Q(x))在I下为假。所以,(x)(P(x)Q(x))((x)P(x)(x)Q(x))在I下为假。2.a)(x)(y)(P(x)Q(y))(x)(P(x)(y)Q(y))(因为y在P(x)中没有自由出现)(x)P(x)(y)Q(y)(因为x在(y)Q(y)中没有自由出现)所以,(x)(y)(P(x)Q(y))(x)P(x)(y)Q(y)。b)(x)(y)(P(x)Q(y))(x)(P(x)(y)Q(y))(因为y在P(x)中没有自由出现)(x)P(x)(y)Q(y)(因为x在(y)Q(y)中没有自由出现)(x)P(x)所以,(x)(y)(P(x)Q(y))(x)P(x)。c)(x)(y)(P(x)Q(y))(x)(P(x)(y)Q(y))(因为y在P(x)中没有自由出现)(x)P(x)(y)Q(y)(因为x在(y)Q(y)中没有自由出现)所以,(x)(y)(P(x)Q(y))(x)P(x)(y)Q(y)。d)(x)(y)(P(x)Q(y))(x)(y)(P(x)Q(y))(x)(P(x)(y)Q(y))(因为y在P(x)中没有自由出现)(x)(P(x))(y)Q(y)(因为x在(y)Q(y)中没有自由出现)(x)P(x)(y)Q(y)(x)P(x)(y)Q(y)所以,(x)(y)(P(x)Q(y))(x)P(x)(y)Q(y)。e)(x)(y)(P(x)Q(y))(x)(y)(P(x)Q(y))(x)(P(x)(y)Q(y))(因为y在P(x)中没有自由出现)(x)(P(x))(y)Q(y)(因为x在(y)Q(y)中没有自由出现)(x)P(x)(y)Q(y)课后答案网(x)P(x)(y)Q(y)所以,(x)(y)(P(x)Q(y))(x)P(x)(y)Q(y)。3.解:(x)(P(x)Q(x))((x)(P(x))(x)(Q(x)))____上述这一步不正确。根据书中105页I16:(x)(P(x)Q(x))(x)(P(x))(x)(Q(x))可知:(x)(P(x)Q(x))((x)(P(x))(x)(Q(x)))因此,最后应该证明出:(x)(P(x)Q(x))(x)P(x)(x)Q(x))这就是书中的I15。习题5.41.a)(y)(z)(P(z,y)(x)(P(z,x)P(x,z)))(y)(z)((P(z,y)(x)(P(z,x)P(x,z)))(P(z,y)(x)(P(z,x)P(x,z))))(化去)(y)(z)((P(z,y)(x)(P(z,x)P(x,z)))(P(z,y)(x)(P(z,x)P(x,z))))(内移)(y)(z)((x)(P(z,y)(P(z,x)P(x,z)))(x)(P(z,y)(P(z,x)P(x,z))))(、前移)(y)(z)((x)(P(z,y)(P(z,x)P(x,z)))(u)(P(z,y)(P(z,u)P(u,z))))(换名)(y)(z)(x)(u)((P(z,y)(P(z,x)P(x,z)))(P(z,y)(P(z,u)P(u,z))))(、前移)上述公式即为原公式的前束范式。令f为二元函词,则原公式的无前束范式为:(z)(x)((P(z,a)(P(z,x)P(x,z)))(P(z,a)(P(z,f(z,x))P(f(z,x),z))))b)(x)(y)(z)((P(x,y)P(y,z)P(z,z))(P(x,y)Q(x,y)Q(x,z)Q(z,z)))(x)(y)(z)((P(x,y)(P(y,z)P(z,z)))((P(x,y)Q(x,y))(Q(x,z)Q(z,z))))(化去)(x)(y)(z)((P(x,y)(P(y,z)P(z,z)))((P(x,y)Q(x,y))(Q(x,z)Q(z,z))))(内移)上述公式即为原公式的前束范式。课后答案网令g为二元函词,则原公式的无前束范式为:(x)(y)((P(x,y)(P(y,g(x,y))P(g(x,y),g(x,y))))((P(x,y)Q(x,y))(Q(x,g(x,y))Q(g(x,y),g(x,y)))))2.令原公式为X,则X(x)(y)(P(x,y)P(y,x))(x)(y)(z)(P(x,y)P(y,z)P(x,z))(x)(y)P(x,y)(x)(P(x,x))(内移)(x)(y)(z)((P(x,y)P(y,x))(P(x,y)P(y,z)P(x,z)))(x)(y)P(x,y)(x)(P(x,x))(前移)(x)(y)(z)((P(x,y)P(y,x))(P(