第三章导数的应用自测题答案一、填空题(本题共6小题,把答案填在题中的横线上)。1、5645,。2、03、1。4、93,。5、11,。6、,1111;,,。二、用洛必达法则求下列极限。1、2coslim2xxx2、22)2(sinlnlimxxx解:原式=11sinlim2xx解:原式=)2(4cotlim2xxx=818csclim22xx3、xbaxxx0lim4、)ln11(lim1xxxx解:原式=babbaaxxxln1lnlnlim0解:原式=21ln)1-x1lnlim1xxxxx(三、求下列函数的单调区间。1、1)(23xxxxf.解:∵)1)(13(123)(f2xxxxx∴)(xf在区间),1()31,(内单增;在),(131内单减。2、)1ln()(xxxf解:∵x111)(fx∴)(xf在区间),0(内单增;在),(01内单减。四、01123xcbxaxxycba),且在,有一拐点(的值,使、、试确定处有极大值。解:baxxx23)(y2,axx26)(y由题意得:103260011cbaabcba五、证明题;1、当0x时,xxx1arctan)1ln(证:令xxxxfarctan)1ln()1()(,0x∵0x则0111)1ln()(2xxxf∴当0x时,)(xf单增。∴0)0(arctan)1ln()1()(fxxxxf又∵0)1ln(x∴xxx1arctan)1ln(2、证明:当xxx12110时,。证:令xxxf121)(,0x∵0x则012121)(xxf∴当0x时,)(xf单增。0)0(121)(fxxxf∴当xxx12110时,六、求函数2211xxeey的渐进线∵xlim2211xxee=1∴1y为水平渐近线。∵0limx2211xxee=∴0x是垂直渐近线。七、某商行能以5%的年利率借得贷款,然后它又将此贷款给顾客,若它能贷出的款额与它贷出的年利率的平方成反比,问年利率为多少时贷出能使商行获利最大?解:令x为年利率,则贷出款额为2kx,获利为:22x5.00(xkxkxky)令01.03xxkky则1.0x答:年利率为%10时贷出能使商行获利最大。第四章不定积分自测题答案一、填空题(本题共9小题,把答案填在题中的横线上)。1、Cxf)(。2、Cxf)(;)(xf。3、dxxf)(。4、Cxf)(212。5、无限多;常数。6、x2sin。7、xxcos2ln2。8、CbaxFa)(1。9、Cxxxcossin。二、计算题1、用基本积分公式计算下列积分(1)dxxxxx434312解:原式=Cxxx3223423lnx41(2)dxxx221解:原式=Cxxdxxdxxxarctan)111(111222(3)dxxxxsincos2cos解:原式=Cxxdxxdxxxxxcossin)sincosxsincossincos22((4)dxxxx)tan(secsec解:原式=Cxxdxxxxsectan)tansec(sec22、用第一类换元积分法计算下列积分(1)dxx25)2(解:原式=Cxdx2725)x2722)2(()((2)dxax3解:原式=Caaxdaxxln313313(3)dxxx212解:原式=Cxxdx)1ln()1(11222(4)dxxx2ln解:原式=Cxxxd3lnlnln32(5)294xdx解:原式=Cxxxd23arctan61)23(123612(6)xdxexcossin解:原式=Cexdexxsinsinsin(7)dxxxsin解:原式=Cxxdxcos2sin2(8)xdx2cos解:原式=Cxxdxx42sin2122cos13、用第二类换元积分法计算下列积分(1)dxax3解:令,3,)x231dttdxta则(原式=CaxCtdtt3443)(43433(2)32xxdx解:令t61x,则dttdx56∴原式=CxxCtttdtttttdt|x1|ln6631ln6)2(616t661613122435(3)12xxdx解:令,tansec)2,0(t,secxtdttdxt则原式=CxCtdttttdtt1arccostansectansec(4)2322)(xadx解:令,sec20(,tanx2tdtadxtta)则,原式=CaxaxCattatdta2222332sinsecsec(5)221xdxx解:令,cos),2,0(tint,sxtdtdx则原式=CxxtCttttdtt21arcsin42sin2coscossin224、用分部积分法计算下列积分(1)xdxarctan解:原式=Cxxxdxxxx)1ln(21arctanx1arctan22(2)xdxln解:原式=Cxxxdxxxlnln(3)dxxex解:原式=Cexexdexxx(4)2lnxxdx解:原式=Cxxdxxxxxdx1lnlnln21(5)xdxexsin解:原式=Cxxexdxexexexdxexexdexxxxxxx2)cos(sinsincossincossinsin(6)xdx3sec解:原式=Cxxxxxxxdxxxxxd)tanseclntan(sec21tanseclnsectansectansec3