圆锥曲线知知识总结及典型题型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高天宇专用-1-圆锥曲线知知识总结及典型题型1.圆锥曲线的定义:椭圆中,与两个定点21,FF的距离的和等于常数a2,且此常数a2一定要大于||21FF,当常数等于||21FF时,轨迹是线段21FF,当常数小于||21FF时,无轨迹;双曲线中,与两定点21,FF的距离的差的绝对值等于常数a2,且此常数a2一定要小于||21FF,定义中的“绝对值”与a2<||21FF不可忽视。若a2=||21FF,则轨迹是以21FF为端点的两条射线,若a2﹥||21FF,则轨迹不存在。若a2=0,则轨迹是线段21FF的中垂线;若去掉定义中的绝对值则轨迹仅表示双曲线的一支。比如:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是()A.B.C.D.(答:C);②方程表示的曲线是_____(答:双曲线的左支)3.(2008北京,理4)若点P到直线1x的距离比它到点(20),的距离小1,则点P的轨迹为()A.圆B.椭圆C.双曲线D.抛物线2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):高天宇专用-2-(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。比如:①已知方程表示椭圆,则的取值范围为____(答:);②若,且,则的最大值是____,的最小值是___(答:)(2)双曲线:焦点在轴上:=1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。比如:①双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);②设中心在坐标原点,焦点21,FF在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:)(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。高天宇专用-3-如已知方程表示焦点在y轴上的椭圆,则m的取值范围是_(答:(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。焦点到原点的距离等于一次项系数的四分之一;4.圆锥曲线的几何性质:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0e1)1.到两定点F1,F2的距离之差的绝对值为定值2a(02a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形高天宇专用-4-方程标准方程12222byax(ba0)12222byax(a0,b0)pxy22参数方程为离心角)参数(sincosbyax为离心角)参数(tansecbyaxptyptx222(t为参数)范围─axa,─byb|x|a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0))0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c(c=22ba)2c(c=22ba)离心率)10(eace)1(eacee=1高天宇专用-5-①双曲线的渐近线方程是,则该双曲线的离心率等于______(答:或);②双曲线的离心率为,则=(答:4或);③设双曲线(a0,b0)中,离心率e∈[,2],则两条渐近线夹角θ的取值范围是________(答:);(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。如设,则抛物线的焦点坐标为________(答:);5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上=1;(3)点在椭圆内高天宇专用-6-6.直线与圆锥曲线的位置关系:(代数法)联立Cl消元得02cbxax(或02cbyay)当0a,o直线与曲线相交(2个交点);o直线与曲线相切(1个交点);o直线与曲线相离(0个交点);当0a,①曲线定不是椭圆;②若曲线是双曲线,则直线l与渐近线平行(1个交点)或重合(0个交点);③若曲线是抛物线。则直线l与抛物线的对称轴平行或重合(1个交点);比如:①直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是_______(答:[1,5)∪(5,+∞));②对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_______(答:相离);特别提醒:直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。1,双曲线①过双曲线内一点的直线只有一个公共点的直线有2条(2与渐近线平行)②过双曲线上一点的直线只有一个公共点的直线有3条(1切线+2与渐近线平行)③过双曲线外一点(除渐近线上点)的直线与双曲线只有一个公共点的直线有4条(2切线+2与渐近线平行)若点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;若在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;注意:①点在两条渐近线上但非原点,只有两条(1切线+2与另一渐近线平行);②P为原点时不存在这样的直线;2,抛物线①过抛物线内一点的直线只有一个公共点的直线有1条(与对称轴平行)高天宇专用-7-②过抛物线上一点的直线只有一个公共点的直线有1条(1切线+1与对称轴平行)③过抛物线外一点(除渐近线上点)的直线与双曲线只有一个公共点的直线有3条(2切线+1与对称轴平行)比如:①过点作直线与抛物线只有一个公共点,这样的直线有______(答:2);②过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为______(答:);③若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_______(答:(-,-1));④过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有____条(答:3);⑤过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_______(答:1);⑥设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为___________(填大于、小于或等于)(答:等于);⑦求椭圆上的点到直线的最短距离(答:);高天宇专用-8-⑧直线与双曲线交于、两点。①当为何值时,、分别在双曲线的两支上?②当为何值时,以AB为直径的圆过坐标原点?(答:①;②);10、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。比如:①过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_______(答:8);②过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ΔABC重心的横坐标为_______(答:3);11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=-;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。比如:①如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是(答:);高天宇专用-9-②已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:);③试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:);特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!12.你了解下列结论吗?(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。1.(2014北京,理11)设双曲线C经过点2,2,且与2214yx具有相同渐近线,则C的方程为________;渐近线方程为________.【答案】221312xy;2yx(3)中心在原点,坐标轴为对称轴的椭圆),0,0(nmnm;双曲线方程可设为(0mn);高天宇专用-10-(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;(5)通径是所有焦点弦(过焦点的弦)中最短的弦;(6)若抛物线的焦点弦为AB,,则①;②(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点13.动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法:直接利用条件建立之间的关系;如已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程.(答:或);②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。如线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,则此抛物线方程为(答:);③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;高天宇专用-11-如(1)由动点P向圆作两条切线PA、PB,切点分别为A、B,∠APB=600,则动点P的轨迹方程为(答:);(2)点M与点F(4,0)的距离比它到直线的距离小于1,则点M的轨迹方程是_______(答:);(3)一动圆与两圆⊙M:和⊙N:都外切,则动圆圆心的轨迹为(答:双曲线的一支);④代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程;如动点P是抛物线上任一点,定点为,点M分所成的比为2,则M的轨迹方程为__________(答:);⑤参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。如(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MN⊥AB,垂足为N,在OM上取点,使,求点的轨迹。(答:);(2)若点在圆上运动,则点的轨迹方程是____(答:);高天宇专用-12-(3)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是________(答:);注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。如已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(1)设为点P的横坐标,证明;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功