卷积ing。。。简单定义:卷积是分析数学中一种重要的运算。设:f(x),g(x)是R1上的两个可积函数,作积分:()g(x)df可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。容易验证,(f*g)(x)=(g*f)(x),并且(f*g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。定义:卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。如果卷积的变量是函数x(t)和h(t),则卷积的计算变为其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。卷积定理:卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x))=F(g(x))F(f(x))其中F表示的是傅里叶变换。这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellininversiontheorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n-1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。应用:首先,在提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。卷积积分:卷积的物理意义:一个我觉得比较精彩的发言。。。开个头!从数学的角度分析:信号处理是将一个信号空间映射到另外一个信号空间,通常就是时域到频域,(还有z域,s域),信号的能量就是函数的范数(信号与函数等同的概念),大家都知道有个Paserval定理就是说映射前后范数不变,在数学中就叫保范映射,实际上信号处理中的变换基本都是保范映射,只要Paserval定理成立就是保范映射(就是能量不变的映射)。前面说的意思就是信号处理的任务就是寻找和信号集合对应的一个集合,然后在另外一个集合中分析信号,Fourier变换就是一种,它建立了时域中每个信号函数与频域中的每个频谱函数的一一对应关系,这是元素之间的对应,那么运算之间的对应呢,在时域的加法对应频域中的加法,这就是FFT线性性的体现,那么时域的乘法对应什么呢,最后得到的那个表达式我们就把它叫卷积,就是对应的频域的卷积。最幽默的解释卷积的物理意义:谈起卷积分当然要先说说冲激函数—这个倒立的小蝌蚪,卷积其实就是为它诞生的。“冲激函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:”说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明”冲激函数”。在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是”卷积”这个数学怪物就这样诞生了。说它是数学怪物是因为追求完美的数学家始终在头脑中转不过来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。于是,他们为它量身定做了一套运作规律。于是,妈呀!你我都感觉眩晕的卷积分产生了。例子:有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天如法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天……每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经和衙门口的臭气一样,传遍八方了!县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?……想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题:——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)?——费话,疼呗!——我问的是:会有什么表现?——看疼到啥程度。像这无赖的体格,每天挨一个板子啥事都不会有,连哼一下都不可能,你也看到他那得意洋洋的嘴脸了(输出0);如果一次连揍他十个板子,他可能会皱皱眉头,咬咬牙,硬挺着不哼(输出1);揍到二十个板子,他会疼得脸部扭曲,象猪似地哼哼(输出3);揍到三十个板子,他可能会象驴似地嚎叫,一把鼻涕一把泪地求你饶他一命(输出5);揍到四十个板子,他会大小便失禁,勉强哼出声来(输出1);揍到五十个板子,他连哼一下都不可能(输出0)——死啦!县令铺开坐标纸,以打板子的个数作为X轴,以哼哼的程度(输出)为Y轴,绘制了一条曲线:——呜呼呀!这曲线象一座高山,弄不懂弄不懂。为啥那个无赖连挨了三十天大板却不喊绕命呀?——呵呵,你打一次的时间间隔(Δτ=24小时)太长了,所以那个无赖承受的痛苦程度一天一利索,没有叠加,始终是一个常数;如果缩短打板子的时间间隔(建议Δτ=0.5秒),那他的痛苦程度可就迅速叠加了;等到这无赖挨三十个大板(t=30)时,痛苦程度达到了他能喊叫的极限,会收到最好的惩戒效果,再多打就显示不出您的仁慈了。——还是不太明白,时间间隔小,为什么痛苦程度会叠加呢?——这与人(线性时不变系统)对板子(脉冲、输入、激励)的响应有关。什么是响应?人挨一个板子后,疼痛的感觉会在一天(假设的,因人而异)内慢慢消失(衰减),而不可能突然消失。这样一来,只要打板子的时间间隔很小,每一个板子引起的疼痛都来不及完全衰减,都会对最终的痛苦程度有不同的贡献:t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数)[衰减系数是(t-τ)的函数,仔细品味]数学表达为:(t)()H(t)dyT——拿人的痛苦来说卷积的事,太残忍了。除了人以外,其他事物也符合这条规律吗?——呵呵,县令大人毕竟仁慈。其实除人之外,很多事情也遵循此道。好好想一想,铁丝为什么弯曲一次不折,快速弯曲多次却会轻易折掉呢?——恩,一时还弄不清,容本官慢慢想来——但有一点是明确地——来人啊,将撒尿的那个无赖抓来,狠打40大板!卷积及拉普拉斯变换的通俗解释:–对于我这类没学过信号系统的人来说太需要了卷积(convolution,另一个通用名称是德文的Faltung)的名称由来,是在于当初定义它时,定义成integ(f1(v)*f2(t-v))dv,积分区间在0到t之间。举个简单的例子,大家可以看到,为什么叫”卷积”了。比方说在(0,100)间积分,用简单的辛普生积分公式,积分区间分成100等分,那么看到的是f1(0)和f2(100)相乘,f1(1)和f2(99)相乘,f1(2)和f2(98)相乘,………等等等等,就象是在坐标轴上回卷一样。所以人们就叫它”回卷积分”,或者”卷积”了。为了理解“卷积”的物理意义,不妨将那个问题“相当于它的时域的信号与系统的单位脉冲响应的卷积”略作变化。这个变化纯粹是为了方便表达和理解,不影响任何其它方面。将这个问题表述成这样一个问题:一个信号通过一个系统,系统的响应是频率响应或波谱响应,且看如何理解卷积的物理意义。假设信号函数为f,响应函数为g。f不仅是时间的函数(信号时有时无),还是频率的函数(就算在某一固定时刻,还有的地方大有的地方小);g也是时间的函数(有时候有反应,有时候没反应),同时也是频率的函数(不同的波长其响应程度不一样)。那我们要看某一时刻t的响应信号,该怎么办呢?这就需要卷积了。要看某一时刻t的响应信号,自然是看下面两点:1。你信号来的时候正赶上人家”系统”的响应时间段吗?2。就算赶上系统响应时间段,响应有多少?响应不响应主要是看f和g两个函数有没有交叠;响应强度的大小不仅取决于所给的信号的强弱,还取决于在某频率处对单位强度响应率。响应强度是信号强弱和对单位强度信号响应率的乘积。”交叠”体现在f(t1)和g(t-t1)上,g之所以是”(t-t1)”就是看两个函数错开多少。由于f和g两个函数都有一定的带宽分布(假若不用开头提到的”表述变化”就是都有一定的时间带宽分布),这个信号响应是在一定”范围”内广泛响应的。算总的响应信号,当然要把所有可能的响应加起来,实际上就是对所有可能t1积分了。积分范围虽然一般在负无穷到正无穷之间;但在没有信号或者没有响应的地方,积也是白积,结果是0,所以往往积分范围可以缩减。这就是卷积及其物理意义啊。并成一句话来说,就是看一个时有时无(当然作为特例也可以永恒存在)的信号,跟一个响应函数在某一时刻有多大交叠。*********拉普拉斯*********拉普拉斯(1729-1827)是法国数学家,天文学家,物理学家。他提出拉普拉斯变换(LaplaceTransform)的目的是想要解决他当时研究的牛顿引力场和太阳系的问题中涉及的积分微分方程。拉普拉斯变换其实是一个数学上的简便算法;想要了解其”物理”意义—如果有的话—请看我举这样一个例子:问题:请计算十万乘以一千万。对于没学过指数的人,就只会直接相乘;对于学过指数的人,知道不过是把乘数和被乘数表达成指数形式后,两个指数相加就行了;如果要问究竟是多少,把指数转回来就是。“拉普拉斯变换”就相当于上述例子中把数转换成”指数”的过程;进行了拉普拉斯变换之后,复杂的微分方程(对应于上例中”复杂”的乘法)就变成了简单的代数方程,就象上例中”复杂”的乘法变成了简单的加减法。再把简单的代数方程的解反变换回去(就象把指数重新转换会一般的数一样),就解决了原来那个复杂的微分方程。所以要说拉普拉斯变换真有”物理意义”的话,其物理意义就相当于人们把一般的有理数用指数形式表达一样。另外说两句题外话:1、拉普拉斯变换之所以现在在电路中广泛应有,根本原因是电路中也广泛涉及了微分方程