单片机在退火炉炉温模糊控制中的应用摘要:讨论了利用模糊控制技术设计的单片机模糊炉温控制系统,并将其应用于退火炉炉温控制上。试验表明,这种控制系统比传统的PID调节控制系统精度高、速度快关键词:模糊控制单片机退火炉炉温模糊控制技术是以模糊数学为基础发展起来的一种新的控制技术。模糊控制方式是一种非线性控制方式,对无法取得数学模型或数学模型相当粗糙的系统可以取得令人满意的控制效果。退火炉炉温控制是一种非线性的时变的复杂过程,炉温控制直接影响着工件的退火质量。本文讨论了利用模糊控制技术设计的单片机模糊炉温控制系统,实验表明该系统比传的PID炉温控制系统精度高、速度快。1单片机模糊炉温控制系统的工作原理单片机模糊炉温控制系统的工作原理如图1所示。该系统的被控对象是退火炉,被控参数是炉内温度γT,退火炉燃实为煤气,改变阀门的开度便可改变退火炉内燃烧的煤气流量,从而改变炉内温度。单片机模糊炉温控制器。控制器根据系统给定温度和炉内实际温度及炉内实际温度的变化率,利用模糊控制算法,求出控制系统的控制输出量μk(数字量),经D/A变换器转变为控制模拟量以控制煤气阀门的开度,从而改变炉温。2模糊控制器的设计考虑到退火炉炉温具有非线性、时变等特点,单片机模糊炉温控制器采用模糊控制理论,通过总结操作人员对过程的操作和控制的经验,用模糊条件语句构成控制规则,采用极大极小合成运算原理,从而得到一个模糊炉温控制模型。模糊控制器的控制步骤大体分三步:精确量模糊化、模糊控制规则推理模糊、模糊判决。2.1确定模糊变量模糊控制器采用目前广泛使用的二维模糊控制器。确定模糊变量为:A:u—炉温温度偏差,B:△u—炉温温度偏差变化率,C:c—煤气阀门开度。2.2精确量的模糊化取取炉温温度偏差u、炉温温度偏差变化率△μ作为控制器的输入信息,二者皆可用模糊语言变量表示为负大(NL)、负中(NM)、负小(NS)、正小(PS)、正中(PM)、正大(PL)。模糊化是对模糊控制器的输入变量求取相应语言值的隶属度。对于输入变量u,其隶属度以图2的图线表示;对于输入变量△u,其隶属度以图3的图线表示。经过模糊化后,可以得到u的隶属度为:μNL(u)、μNM(u)、…、μPL(u);△u的隶属度为:μNL(△u)、μNM(△u)、…、μPL(△u)。由上面的两个隶属函数图可知,对于个给定的u或△u,至多有两个对应的模糊语言值为0。2.3模糊控制规则推理在单片机模糊炉温控制系统中,采用IfAiandBiThenCi为模糊控制规则。其中,Ai为误差模糊子集,Bi为误差变化模糊子集,Ci为输出量模糊子集。模糊关系采用模糊推理采用Ci=(Ai×Bi)oRμμμ利用式1、式2求出模糊控制规则,模糊规则揄按照模糊规则来完成,最后形成输出变量的隶属度。单片机炉温模糊控制规则如表1所示。表1模糊控制规则2.4模糊判决根据表1所列的模糊控制规则,可以求出每一条规则的模糊关系Ri,进而求出每一条规则的模糊关系R。对于给定的A和B的值,通过合成推理规则可求出对应的输出量C,再经过模糊判决可得到实际执行量。为了充分利用模糊控制量向量所取得的信息,本控制器系统采用加权平均法将模糊控制向量转化为精确控制向量。取Ki=μ(Ci),则3模糊控制器在单片机上的实现3.1硬件组成如图1所示,模糊控制器的CPU采用AT89C51单片机,它是一种低功耗、高速的八位CMOS芯片,具有4KB可编程ROM,128字节的RAM,32条I/O线,2个16位定时/计数器和5个中断源等资源。控制器可在单片机系统控制软件的支持睛,由键盘操作独立工作,也可作为下位机方式工作。退火炉的温度选用镍铬—镍铝热电偶采集,其输出信号为0~41.32mV。变送器选用电动单元组合仪表中的mV变送器,输出信号为0~10mA。然后再经过电流-电压变换电路变换为0~2V的电压信号,送到A/D转换器ICL7135进行A/D转换。由于ICL7135A/D转换器的分辨率为两万分之一,即控制器的分辨率为0.005℃,完成满足系统要求。控制器的控制输出量μk(数字量),经D/A转换器转换为模拟控制量,以控制煤气阀门的开度。模糊控制器采用DAC0832作为D/A转换器件,控制电路接成8位电压输出型DAC,从基础运放芯片μA741的第6引脚输出单极性模拟电压。输出模拟控制电压为:VOUT=-D·VREF/256式中,D为单片机输出模糊控制数字量,VREF为基准电压。控制器的通信采用RS-232通信方式,通信接口由一片ICL232完成从TTL电平到RS-232标准电平的转换,通过RS-232接口与上位微机通信;单片机控制电路中连接了一片串行E2PROM芯片24LC02,用来存储智能运算中必需的控制过程参数;键盘显示电路与单片机AT89C51的P0口和P2口连接,采用定时口断扫描方式工作,对8位数码管诸位扫描显示,键盘用组合功能键完成系统参数的设置与修改。3.2软件组成模糊控制器是在应用程序软件控制下完成对退火炉炉温控制的。系统控制软件主要包括:主程序、显示子程序、A/D转换(数据采集)子程序、温度设定调节子程充、按键中断服务子程序、定时器中断服务子程序、打印子程序、数据采集误差修正子程序、模糊推理子程序、模糊决策子程序、函数子程序、模糊关系R表格处理子程序、D/A转换子程序等组成,其程序流程框图如图4所示。其它子程序由于篇幅所限,在此不再详细介绍。温度传感器在笔记本电脑的应用由于计算机效能不断的推陈出新,愈来愈多的功能被整合到计算机中。因此,计算机的处理量与日俱增,这些资料包含多媒体数据及3D动画资料。为了满足大量的数据处理需求,愈来愈多的芯片组被放入主机中,同时,CPU及芯片组的工作频率也不断提高。更多的芯片组及更快的时钟频率意味着更多热量的产生。对于笔记本电脑,用户除了要求系统具有更好的效能外,在外观上,还要求轻、薄、小,这是设计人员所面临的另一挑战。在有限的空间内,如何耗散系统所产生的热量是一个棘手问题。如何兼顾系统效能、系统舒适度(包括笔记本电脑外壳的温度、风扇旋转所产生的噪音)、及系统运行时间,是笔记本电脑设计的一个重要课题。笔记本电脑中需要监测温度的组件图1为笔记本电脑的典型系统框图,CPU为系统中最大的热源,目前笔记本电脑普遍使用的IntelDothan处理器其瞬间最大功耗约为37W,AMDAthlon处理器其瞬间最大功耗约为35W至40W,Intel下一代Merom处理器的瞬间最大功耗将高达50W。CPU是计算机中温度检测的重要目标。目前,无论是Intel或AMD的CPU,CPU内部都含有提供远程温度检测用的二极管,以提供温度传感器,直接检测CPU内部管芯的温度,并对其进行精确的温度控制。[p=30,2,center]点击看原图[/p]图形处理芯片(GPU)是除了CPU之外,系统中的另一个重要的热源。由于液晶显示器分辨率的增高,图形处理芯片的数据处理量也大大增加,为了让图形处理芯片可靠工作,目前普遍使用的图形处理芯片,也和CPU一样,均内含提供远程温度检测的二极管,以便直接检测图形处理芯片内部管芯的温度,并对其进行温度控制。笔记本电脑中,其它可能需要进行温度检测及控制的组件还包括DDR内存、硬盘和光驱。温度检测的目地是让笔记本电脑的嵌入式微控制器能对笔记本电脑作适当的电源管理及热管理。精确可靠的温度检测在笔记本电脑的应用上具有下列优点:一.精确的温度检测能让系统发挥最高的效能:当组件实际温度并未到达系统降频的临界点时,因为温度传感器检测误差,可能使系统降频动作提早发生,这会使系统无法发挥最大的效能。二.精确的温度检测能降低系统噪音并延长计算机电池使用时间:如果温度传感器的检测温度高于系统实际温度,将造成风扇提早运转,或风扇转速比实际需求高,这将造成系统不必要的风扇噪音及功耗。三.精确的温度检测能提高系统稳定性,增加产品竞争力:如果温度传感器的检测温度低于系统实际温度,可能在系统实际温度已到达降频临界点时系统仍然保持较高的工作频率,从而造成系统瘫痪甚至损坏。此外,精确的温度检测允许系统使用最小的散热模块,如此可以降低散热模块成本,增加产品竞争力。笔记本电脑常用的温度传感器热敏电阻和集成温度传感器是笔记本电脑常用的两种温度传感器,以下我们将探讨这两种温度传感器的工作原理及使用。热敏电阻热敏电阻按温度对电阻特性变化一般可分为正温度系数热敏电阻、负温度系数热敏电阻及临界温度系数热敏电阻。正温度系数热敏电阻及临界温度系数热敏电阻的电阻特性会在特定温度发生急剧变化,适合用于定温度检测或限制在较小的温度范围内。负温度系数热敏电阻主要为氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物的复合烧结体,这些金属氧化物材料都具有半导体性质,当温度较低时,半导体内的电子-空穴对儿数目较少,因此电阻较高。当温度升高时,热敏电阻内的电子-空穴对儿数量增加,因此导电率增加,电阻值下降。图2为典型负温度系数热敏电阻特性曲线,电阻和温度之间的关系式如下:[p=30,2,center][/p][p=30,2,center][/p][p=30,2,left]R0、R分别是环境温度为T0、T(K)绝对温度时的电阻值。B是热敏电阻的常数,B常数通常介于2500K至5000K范围内。图3为典型负温度系数热敏电阻的应用电路。利用笔记本电脑嵌入式微控制器的模数转换器(ADC)所读到的电压值推算出NTC的电阻值,因而推算出环境温度。利用负温度系数热敏电阻测量温度时误差很大,误差来源包括NTC本身的误差、提升电阻的误差、偏压电源(VCC)的误差、ADC的误差及测量噪声所造成的误差。从成本考虑,如果只考虑负温度系数热敏电阻本身的价格,这是一个廉价的解决方案。但若把偏压电路和额外的ADC成本一并考虑进去,成本可能增加。[/p][p=30,2,center][/p]集成温度传感器集成温度传感器是目前笔记本电脑普遍采用的温度传感器,具有精确度高、响应速度快、体积小、功耗低、软件界面控制方便等优点。图4为典型集成温度传感器框图。温度检测的主要机制为集成温度传感器内部的电流源和ADC,集成温度传感器的工作原理是利用半导体PN结正向压降在不同的温度下具有不同导通压降的特性进行温度测量的。由半导体PN结伏-安特性曲线:[p=30,2,center][/p][p=30,2,center]点击看原图[/p]ID:二极管的正向电流,IS:二极管的反向饱和电流,VD:二极管的正向压降。n:二极管的理想因素(一般约为1),k:波尔兹曼常数(1.38×10-23joules/K)。T:绝对温度K,q:一个电子的电荷(1.6×10-19C)因为,因此我们可以将式(2)简化为[p=30,2,center][/p]集成温度传感器内部的电流源会送出二个不同的电流,ADC在不同电流时读出不同的二极管正向压降。也就是当电流源送出高电流IDH时,ADC读数VDH。IDH和VDH的关系式为[p=30,2,center][/p]当电流源送出低电流IDL时,ADC读数VDL。IDL和VDL的关系式为[p=30,2,center][/p]将(4)式除以(5)式,可得到[p=30,2,center][/p]将(6)式二边取对数并作整理,我们可以得到[p=30,2,center][/p][p=30,2,left]由于n、k和q为常数,而IDH和IDL由温度传感器内部产生,因此由VDH和VDL的变化量我们就可以测出温度。远程二极管测量回路杂散电阻的影响实际应用中,用于远程温度检测的二极管位于CPU或图形处理芯片内部,二极管内阻及印刷电路板的寄生电阻会影响远程温度测量的准确度。假设远程二极管测量回路的等效寄生电阻为RP,当电流源送出高电流IDH时,ADC实际读到的电压VADC_H为:[/p][p=30,2,center][/p]当电流源送出低电流IDL时,ADC实际读到的电压VADC_L为[p=30,2,center][/p]将(8)式和(9)式代入(7)式,我们可得到[p=30,2,center]点击看原图[/p]由(11)式所得到的结果,当(IDH–I