2019年电大高数基础形考1-4答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年电大高数基础形考1-4答案《高等数学基础》作业一第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,(C)中的两个函数相等.A.2)()(xxf,xxg)(B.2)(xxf,xxg)(C.3ln)(xxf,xxgln3)(D.1)(xxf,11)(2xxxg⒉设函数)(xf的定义域为),(,则函数)()(xfxf的图形关于(C)对称.A.坐标原点B.x轴C.y轴D.xy⒊下列函数中为奇函数是(B).A.)1ln(2xyB.xxycosC.2xxaayD.)1ln(xy⒋下列函数中为基本初等函数是(C).A.1xyB.xyC.2xyD.0,10,1xxy⒌下列极限存计算不正确的是(D).A.12lim22xxxB.0)1ln(lim0xxC.0sinlimxxxD.01sinlimxxx⒍当0x时,变量(C)是无穷小量.A.xxsinB.x1C.xx1sinD.2)ln(x⒎若函数)(xf在点0x满足(A),则)(xf在点0x连续。A.)()(lim00xfxfxxB.)(xf在点0x的某个邻域内有定义C.)()(lim00xfxfxxD.)(lim)(lim00xfxfxxxx(二)填空题⒈函数)1ln(39)(2xxxxf的定义域是|3xx.⒉已知函数xxxf2)1(,则)(xfx2-x.⒊xxx)211(lim.1122211lim(1)lim(1)22xxxxexx⒋若函数0,0,)1()(1xkxxxxfx,在0x处连续,则ke.⒌函数0,sin0,1xxxxy的间断点是0x.⒍若Axfxx)(lim0,则当0xx时,Axf)(称为0xx时的无穷小量.(二)计算题⒈设函数0,0,e)(xxxxfx求:)1(,)0(,)2(fff.解:22f,00f,11fee⒉求函数21lgxyx的定义域.解:21lgxyx有意义,要求2100xxx解得1020xxx或则定义域为1|02xxx或⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:DAROhEBC设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R直角三角形AOE中,利用勾股定理得2222AEOAOERh则上底=2222AERh故2222222hSRRhhRRh⒋求xxx2sin3sinlim0.解:000sin3sin33sin3333limlimlimsin2sin2sin22222xxxxxxxxxxxxxxx=133122⒌求)1sin(1lim21xxx.解:21111(1)(1)111limlimlim2sin(1)sin(1)sin(1)11xxxxxxxxxxx⒍求xxx3tanlim0.解:000tan3sin31sin311limlimlim3133cos33cos31xxxxxxxxxxx⒎求xxxsin11lim20.解:22222200011(11)(11)limlimlimsin(11)sin(11)sinxxxxxxxxxxxx020lim0sin111(11)xxxxx⒏求xxxx)31(lim.解:1143331111(1)[(1)]1lim()lim()limlim33311(1)[(1)]3xxxxxxxxxxxexxxexexxx⒐求4586lim224xxxxx.解:2244442682422limlimlim54411413xxxxxxxxxxxxx⒑设函数1,111,1,)2()(2xxxxxxxf讨论)(xf的连续性,并写出其连续区间.解:分别对分段点1,1xx处讨论连续性(1)1111limlim1limlim1110xxxxfxxfxx所以11limlimxxfxfx,即fx在1x处不连续(2)221111limlim2121limlim111xxxxfxxfxxf所以11limlim1xxfxfxf即fx在1x处连续由(1)(2)得fx在除点1x外均连续故fx的连续区间为,11,《高等数学基础》作业二第3章导数与微分(一)单项选择题⒈设0)0(f且极限xxfx)(lim0存在,则xxfx)(lim0(C).A.)0(fB.)0(fC.)(xfD.0cvx⒉设)(xf在0x可导,则hxfhxfh2)()2(lim000(D).A.)(20xfB.)(0xfC.)(20xfD.)(0xf⒊设xxfe)(,则xfxfx)1()1(lim0(A).A.eB.e2C.e21D.e41⒋设)99()2)(1()(xxxxxf,则)0(f(D).A.99B.99C.!99D.!99⒌下列结论中正确的是(C).A.若)(xf在点0x有极限,则在点0x可导.B.若)(xf在点0x连续,则在点0x可导.C.若)(xf在点0x可导,则在点0x有极限.D.若)(xf在点0x有极限,则在点0x连续.(二)填空题⒈设函数0,00,1sin)(2xxxxxf,则)0(f0.⒉设xxxfe5e)e(2,则xxfd)(lndxxx5ln2.⒊曲线1)(xxf在)2,1(处的切线斜率是21k⒋曲线xxfsin)(在)1,4π(处的切线方程是)41(2222xy⒌设xxy2,则y)ln1(22xxx⒍设xxyln,则yx1(三)计算题⒈求下列函数的导数y:⑴xxxye)3(xxexexy212323)3(⑵xxxylncot2xxxxyln2csc2⑶xxyln2xxxxy2lnln2⑷32cosxxyx4)2(cos3)2ln2sin(xxxxyxx⑸xxxysinln2xxxxxxxy22sincos)(ln)21(sin⑹xxxylnsin4xxxxxylncossin43⑺xxxy3sin2xxxxxxxy2233ln3)(sin)2(cos3⑻xxyxlntanexxexeyxx1costan2⒉求下列函数的导数y:⑴21exy2112xxeyx⑵3coslnxy32233tan33cossinxxxxxy⑶xxxy87xy8187xy⑷3xxy)211()(31213221xxxy⑸xyecos2)2sin(xxeey⑹2ecosxy22sin2xxexey⑺nxxyncossin)sin(sincoscossin1nxxnnxxxnynn⑻2sin5xy2sin25cos5ln2xxxy⑼xy2sinexxey2sin2sin⑽22exxxy222)ln2(xxxexxxxy⑾xxxyeeexexxeeexexexyxx)ln(⒊在下列方程中,是由方程确定的函数,求:⑴yxy2ecosyexyxyy22sincosyexxyy22cossin⑵xyylncosxyxyyy1.cosln.sin)lnsin1(cosxyxyy⑶yxyx2sin2222sin2.cos2yyxyxyyyxyyyxyxyxysin22)cos2(22222cos2sin22xyxyyyxyy⑷yxyln1yyy1yyy⑸2elnyxyyyyexy21)2(1yeyxy⑹yyxsine12xxeyyyeyy.sin.cos2yeyyeyxxcos2sin⑺3eeyxyyyeyexy2323yeeyyx⑻yxy252ln25ln5yxyy2ln215ln5yxy⒋求下列函数的微分yd:⑴xxycsccotdxxxxdy)sincoscos1(22⑵xxysinlndxxxxxxdy2sincoslnsin1⑶xxy11arcsindxxxxdxxxxxxdy2222)1(11)1()1()1()11(11⑷311xxy两边对数得:)1ln()1ln(31lnxxy)1111(31xxyy)1111(11313xxxxy⑸xyesin2dxeedxeeedyxxxxx)2sin(sin23⑹3etanxyxdxexdxxedyxx2222sec33sec33⒌求下列函数的二阶导数:⑴xxylnxyln1xy1⑵xxysinxxxysincosxxxycos2sin⑶xyarctan211xy22)1(2xxy⑷23xy3ln322xxy2233ln23ln3422xxxy(四)证明题设)(xf是可导的奇函数,试证)(xf是偶函数.证:因为f(x)是奇函数所以)()(xfxf两边导数得:)()()()1)((xfxfxfxf所以)(xf是偶函数。《高等数学基础》作业三第4章导数的应用(一)单项选择题⒈若函数)(xf满足条件(D),则存在),(ba,使得abafbff)()()(.A.在),(ba内连续B.在),(ba内可导C.在),(ba内连续且可导D.在],[ba内连续,在),(ba内可导⒉函数14)(2xxxf的单调增加区间是(D).A.)2,(B.)1,1(C.),2(D.),2(⒊函数542xxy在区间)6,6(内满足(A).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升⒋函数)(xf满足0)(xf的点,一定是)(xf的(C).A.间断点B.极值点C.驻点D.拐点⒌设)(xf在),(ba内有连续的二阶导数,),(0bax,若)(xf满足(C),则)(xf在0x取到极小值.A.0)(,0)(00xfxfB.0)(,0)(00xfxfC.0)(,0)(00xfxfD.0)(,0)(00xfxf⒍设)(xf在),(ba内有连续的二阶导数,且0)(,0)(xfxf,则)(xf在此区间内是(A).A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的(二)填空题⒈设)(xf在),(ba内可导,),(0bax,且当0xx时0)(xf,当0xx时0)(xf,则0x是)(xf的极小值点.⒉若函数)(xf在点0x可导,且0x是)(xf的极值点,则)(0xf0.⒊函数)1ln(2xy的单调减少区间是)0,(.⒋函数2e)(xxf的单调增加区间是),0(⒌若函数)(xf在],[ba内恒有0)(xf,则)(xf在],[ba上的最大值是)(a

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功