1一、解答题(共30小题)1、如图,直线与双曲线交于点A、B两点,且点A的横坐标为4,(1)求k的值;(2)若双曲线上一点C的纵坐标为1,过点C作CD垂直x轴于点D,求△AOD的面积.2、若矩形的长为x,宽为y,面积保持不变,下表给出了x与y的一些值求矩形面积.(1)请你根据表格信息写出y与x之间的函数关系式;(2)根据函数关系式完成上表.3、我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:_________(s为常数,s≠0).4、已知经过闭合电路的电流I与电路的电阻R是反比例函数关系,请根据表格已知条件求出I与R的反比例函数关系式,并填写表格中的空格.5、有一水池装水12m2,如果从水管中1h流出xm3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.26、面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?7、已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.8、某三角形的面积为15cm2,它的一边长为xcm,且此边上高为ycm,请写出x与y之间的关系式,并求出x=5时,y的值.9、某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=_________.10、甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.11、某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)12、如图,E为矩形ABCD的边CD上的一个动点,BF⊥AE于F,AB=2,BC=4,设AE=x,BF=y,求y与x之间的关系式,并写出x的取值范围.313、(2011•河池)如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?14、(2011•大庆)如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?415、(2011•郴州)用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?16、(2010•湛江)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤X≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?17、(2010•泰州)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?518、(2010•嘉兴)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?19、(2010•丹东)某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?20、(2010•达州)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?621、(2009•枣庄)为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?22、(2009•衢州)水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?723、(2009•河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?24、(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m﹣n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).25、(2008•太原)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,求f,v之间的关系式,并计算当车速为100km/h时视野的度数.826、(2008•苏州)如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A,B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴,y轴的正方向分别表示正东、正北方向.设A,B两船可近似看成在双曲线y=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A,B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A,B,C三船可分别用A,B,C三点表示).(1)发现C船时,A,B,C三船所在位置的坐标分别为A(_________),B(_________)和C(_________);(2)发现C船,三船立即停止训练,并分别从A,O,B三点出发船沿最短路线同时前往救援,设A,B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.27、(2008•庐阳区)小华家离学校500m,小华步行上学需xmin,那么小华步行速度y(m/min)可以表示为y=;水平地面上重500N的物体,与地面的接触面积为xm2,那么该物体对地面压强y(N/m2)可以表示为y=;…,函数关系式y=还可以表示许多不同情境中变量之间的关系,请你再列举出一例.28、(2008•淮安)某项工程需要沙石料2×106立方米,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中平均每天的工作量v(立方米/天)与完成任务所需要的时间t(天)之间具有怎样的函数关系写出这个函数关系式.(2)阳光公司计划投入A型卡车200辆,每天一共可以运送沙石料2×104立方米,则完成全部运送任务需要多少天如果工作了25天后,由于工程进度的需要,公司准备再投入