Carbonsupportedplatinum–goldalloycatalystfordirectformicacidfuelcells碳负载Pt-Au型催化剂的直接甲酸燃料电池钟永红、丁淑英一、数据库和期刊杂志主要英文数据库:Elsevier,Science,Nature等二、文章信息和关键字四、摘要三、作者香港科技大学机械工程学系五、引言•Liquidfuel-feedfuelcells,giventheirrelativelysimplesystemdesignandcelloperation,areattractiveasapowersourceforportableelectronicdevices.Amongvariousliquidfuel-feedfuelcells,directmethanolfuelcells(直接甲醇燃料电池)(DMFCs)havebeenextensivelyinvestigatedandasignificantprogresshasbeenmadeinthedevelopmentofthistypeoffuelcell.•液体燃料电池因为其设计和使用相对较简单,对于便携式电力装置,是一种比较有吸引力的能源。各种燃料电池中,甲醇燃料电池已经被广泛研究,并取得重大进展。•However,despitemanyyearsofintensiveresearchintotheDMFCtechnology,inherentlimitationsstillremain.Methanolistoxicandsluggishintheanodicoxidationkinetics;moreover,DMFCssufferfromfuelcrossoverthroughNafion-basedmembranes.Forthesereasons,increasingattentionhasbeenpaidtothesearchforalterativeliquidfuels.•由于集中研究甲醇燃料电池技术,比较局限。在阳极氧化动力学上反应迟钝,有毒,更重要的是,甲醇燃料电池的燃料要交叉通过全氟磺酸膜。越来越多的研究改变液体燃料。•FormicacidexhibitsasmallercrossoverfluxthroughNafionmembranethandoesmethanol,allowingtheuseofhighconcentratedfuelsolutionsandthinnermembranesindirectformicacidfuelcells(DFAFCs).DFAFCsalsohaveahigherelectromotiveforce,ascalculatedfromtheGibbsfreeenergy,thanDMFCs.Inaddition,formicacidisastrongelectrolytethatfacilitatesprotontransportincatalystlayers.•甲酸比甲醇表现出更低的交叉跨界,甲酸燃料电池可以利用更高浓度的液体燃料和更薄的薄膜,用Gibbs自由能计算,甲酸燃料电池比甲醇有更高的电动势,甲酸是强电解质,可以促进质子在催化剂层中的流动。相比甲醇燃料电池,甲酸电池可以变得更轻、更小、更低温。1、试剂六、实验20mlH2PtCl6和HAuCl4DMF溶液混合、紫外灯照射3小时182mg碳粉末、用力搅拌40ml0.2MNaoH溶液形成沉淀,离心分离出沉淀乙醇和水多次洗涤、烘干2、催化剂的制备Electrochemicalmeasurements(电化学测量)werecarriedoutbycyclicvoltamm-etry(CV)usingapotentiostat(稳压器).Aconventional,three-electrodecell(三电极电解池)consistingofGCEwithanareaof0.125cm2astheworkingelectrode(电极),Ptfoilasthecounterelectrode,andasaturatedcalomelelectrode(饱和甘汞电极)(SCE)asthereferenceelectrodewasused.Thereferenceelectrode(参考电极)wasplacedinaseparatechamber(在一个单独的室),whichwaslocatedneartheworkingelectrodethroughaLuggincapillarytube(毛细管).TheworkingelectrodewasmodifiedwiththecatalystlayerachievedbydroppingasuitableamountofcatalystinkontheGCE.3、组装装置Thecatalystinkwaspreparedbyultrasonicallydispersing(超声分散)10mgof30wt%ofPt/CandPtAu/Cin1.9mLofethanol,towhich0.1mLof5wt%Nafion(全氟磺酸)solutionwasadded,andthedispersionwasultrasonicated(超声)for30mintoobtainahomogeneoussolution.Aquantityof6µLofthedispersion(分散)waspipettedout(吸取)onthetopoftheGCEanddriedinairtoyieldametalloading(金属负载)of72µgcm−2.TheCVexperimentswereperformedin0.5MH2SO4solutioncontaining0.5MHCOOHatascanrate(扫描速率)of50mVs−1.SolutionswerepreparedfromanalyticalgradereagentsandDIwater(分析纯试剂和去离子水).Allexperimentsweredoneatroomtemperatureinnitrogen(氮气)(99.9%)saturatedsolutions.Thein-house(内部)fabricatedDFAFCconsistedofamembraneelectrodeassembly(膜电极)(MEA),withanactiveareaof2.3cm×2.3cm,sandwichedbetweentwobipolarplates(夹在两个双极板),whichwerefixedby(固定)twofixtureplates(两个夹具板).TheMEAconsistedofaNafion(全氟磺酸)115membraneandtwoelectrodes.Forfabricationoftheanode(制造的阳极),commercial-grade30wt%Teflon-treatedcarbonpaper(聚四氟乙烯处理碳纸)(E-TEK)wasemployedasthebackinglayer.Thegasdiffusionlayer(气体扩散层)(GDL)wasfabricatedon装配在onesideofthecarbonpapercomprisingVulcanXC-72carbonand30wt%Teflon聚四氟乙烯.Tofabricateanodecatalystlayers制造阳极催化剂层,theanodeinks阳极油墨werepreparedbymixingin-house-made30wt%PtAu/CandPt/Cwith10wt%Nafioninethanol.Thepreparedanodeinks(阳极油墨)wereuniformlybrushed(刷)ontheGDLina5.3cm2areatogiveanapproximatemetalloading(金属负载)of2.0mgcm−2ontheanode(阳极).Finally,0.5mgcm−2ofNafion(全氟磺酸)wasuniformly(均匀地)coatedon(涂布在)theanodecatalystlayersanddriedat80◦Cinoven.ThecommercialPtblack(铂黑)(4mgcm−2)catalystwasusedatthecathode.(阴极).TheMEA(膜电极)wasformedbysandwiching(夹层铺料)theNafion115membrane(膜电极)betweentheanodeandthecathode(阴极)andbyhotpressing(热压烧结)at135◦Cunderapressure(压力)of4MPafor3min.TheMEAs(膜电极)fabricated(制造)byusingthePtAu/CandPt/Ccatalystsattheanodeweretestedinasinglecellfixture(电池夹具)(withanactiveareaof5.29cm2)havingthree-passserpentineflowchannels(有三通式蛇形流动通道)withbothwidthsanddepths(同时与宽度和深度)of0.7mm.TheMEAswereinitiallyactivated(最初激活)at60◦Cfor24hbyfeeding2Mformicacidataflowrate(在流量)of2mLmin−1totheanodeanddryoxygengasataflowrate(在流量)of100sccmtothecathode.Aftertheactivationprocess(在激活过程,)theDFAFCperformancecurves(性能曲线)wererecordedbyfixingtheloadcurrent(固定负载电流),whichwascontrolledwithanelectricloadsystem(电动加载系统)(BT2000,ArbinInstrument,Inc.).七、表征结果与讨论1、PtAu/C纳米粒子的物理化学性能表征:根据透射电镜(TEM)可以发现,Pt–Au纳米粒子呈球形均匀的分散并且没有发生聚集。asevidencedbythelatticefringesacrossthefullextentofimage.Fig.2showsthedistributionofparticlediameterestimatedfromanensembleof150particlesinanarbitrarilychosenareaoftheHRTEMimages.TheevaluationofthecharacteristicdiameterofthePt–Auparticlesindicatesasizedistributionfrom2.4to5.8nmwithanaveragediameterof3.8nm.任意一个区域以150个Pt–Au粒子为一组的粒子直径分布图,粒子直径大小分布为2.4-5.8nm,平均直径3.8nm元素组成为50.6at%Pt、49.4at%Au,Pt:Au比例为1:1ThecompositionofPt–AuparticlesanalyzedbyEDSisshowninFig.3.Ithasanelementalcompositionof50.6at%Ptand49.4at%Au,whichisconsistentwiththePt:Auratiointheprecursor(withplatinumtogoldmoleratioof1:1).结果表明碳粉上形成了Pt–Au合金,PtAu/C催化剂的平均直径为3.0nm。1、