设计者:班级生物0902姓名郑勇廖祥兵学号2009350320093509指导教师:陆爱霞设计成绩:进度说明书图纸总分日期:2011-11-19西南科技大学生命科学与工程学院2目录1.综述……………………………………………………………………31.1换热器较………………………………………………2.课程设计任务书……………………………………………………43.设计计算………………………………………………………………53.1确定设计案…………………………………………………3.2流动空间以及流速的确定…………………………………53.3确定流体流动及进出口温度……………………………53.4计算两流体的平均温度差…………………………83.5计算热负荷和冷却水流量………………………4.换热器主要附件的确定及工艺结构尺寸…………84.1污垢热阻…………………………………………………94.2管程数和传热管数…………………………………………94.3平均温度校正和壳程数…………………………………104.4换热管排列和分程法……………………………………104.5折流板和接管…………………………………………115.核算总传热系数…………………………………115.1壳程对流传热系数………………………………………115.2管程对流传热系数…………………………………125.3总传热系数…………………………………………………135.4设计裕度………………………………………………136.核算压强降………………………………………………1336.1管程压强降…………………………………………136.2壳程压强降…………………………………………147.换热器主要结构尺寸和计算结果…………………………158.换热器的安装与维修………………………………………166.参考文献……………………………………………………………1641.综述换热器的分类与比较,根据冷、热流体热量交换的原理和方式,换热器基本上可分为三大类即间壁式混合式和蓄热式,其中间壁式换热器应用最多,所以主要讨论此类换热器。1.1换热器的分类与比较(一)管式换热器管式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束,管束两端固定于管板上。在管式换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。管式换热器根据生产需要的不同还可分为蛇管换热器、套管式换热器、列管式换热器。(1).蛇管换热器这种换热器是将金属管弯绕成各种与容器想适应的形状并沉浸在容器内的液体中。蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀性材料制造;其缺点是容器内液体湍流程度低,管外对流传热系数小。(2).套管式换热器套管式换热器是用两种尺寸不同的标准管连接称为同心圆的套管,外面的叫壳程内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。(3).列管式换热器列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:1固定管板式换热器:这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。2浮头式换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。3U型管式换热器:U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。管程至少为两程,管束可以抽出清洗,管子5可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。优点是结构简单,质量轻,适用于高温高压条件。(二)板式换热器板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。2.课程设计任务书2.1设计题目:煤油换热器的设计2.2设计条件:1、处理能力1.188×105吨/年煤油2、设备型式列管式换热器3、操作条件a.煤油:入口温度120℃,出口温度40℃b.冷却介质:自来水,入口温度10~30℃,出口温度50~60℃c.允许压强降:不大于1.5×105Pad.每年按330天计,每天24小时连续运行。3设计计算3.1确定设计方案根据设计条件,由于被冷却流体煤油不够清洁,因此不能选用U形管式换热器;另外,由于被冷却流体煤油与热流体自来水的温差相对来说比较高,所以排除了选固定管板式换热器的可能性。然而浮头式换热器,它的两端管板的有一端可以沿轴向自由浮动,这种结构不但完全清楚了热应力,而却整个管束可以从壳体中抽出,便于清洗和检修。因此,此次设计应选择浮头式的列管式换热器。根据设备的使用合理性原则,3.2流动空间以及流速的确定从增加两物流的传热膜系数看,应使煤油走管程,冷却水走壳程。但由于冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降;又被冷却的流体宜走壳程,便于散热。所以从总体考虑,应使冷却水走管程,煤油走壳程。选用25×2.5的碳钢管,管内流速取0.8m/s。63.2计算总传热系数3.2.1确定流体流动及进出口温度定性温度:可取流体进口温度的平均值。壳程煤油的定性温度为T=240120=80(℃)管程流体的定性温度为取进口温度25℃,出口温度55℃t=25624=40(℃)根据定性温度分别查取流体的有关物理性质数据查《工程常用物质的热物理性质手册》可得煤油在80℃的有关物性数据如下:密度20/781mkg定压比热容)/(24.20℃kgkJcp导热系数o=0.144W/(m·℃)粘度0=0.664X103Pa·s冷却水在40℃的有关物性数据如下:密度31m/2.992g定压比热容)/(17.41℃kgkJcp导热系数)(6338.01℃mw粘度sPa3110656.073.2.2计算两流体的平均温度差2121/1ttntttm=244056120ln)2440()56120(=34.625℃3.2.3计算热负荷和冷却水流量热流量hkgqm/1500024330/1010188.1351wTTcqQpm7600003600/802280150003600/)(2111冷却水用量hkgttcqqpm/948.20483)2753(4174760000)(12223.2.4总传热系数假设总传热系数K=400)/(℃㎡w、3.3换热器主要附件的确定及工艺结构尺寸83.3.1污垢热1SR=0.00034394m2·℃/W0SR=0.00017197m2·℃/W3.3.2管程数和传热管数3.3.2.1计算传热面积㎡874.54625.344007600001mtKQS考虑15%的面积裕度㎡105.63874.5415.115.11SS3.3.2.2管径和管内流速选用25×2.5㎜的传热管(碳钢),取管内流速为1u=0.8m/S3.3.2.3管程数和传热管数12s4nudVπ=根根23829.228.002.0785.02.992/3600/948.204832按单程管计算,所需的传热管长度为mndSLs951.3423025.014.3105.630π按单管程设计,传热管过长,宜采用多管程结构。现在取L=9米管,4管程该换热器管程数为Np=23×4=92根3.3.2平均温度校正和壳程数平均传热温差校正系数5.2245640120R93332.0241202456P按双壳程,四管程,温差校正系数应查有关图表,可得。t0.89mtmtt'℃816.3089.0625.343.3.3热流量的校正Q=KA'mt=40063.10530.816=777900w3.3.4换热管排列和分程法采用组合排列法,即每程内均按正三角排列,隔板两恻采用正方形排列.取管心距odt25.1,则mmt3225.312525.1横过管束中心线的管数(根)(根)12414.119219.119.1Nnc采用多管程结构,取管板利用率0.7,则壳体内径为mmNtD198.3857.0923205.105.1取400mm3.3.5折流板和接管3.3.5.1折流板(按单壳程计算)采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为mmh10040025.0故可取100mm取折流板间距DB4.0,则mmB1604004.0可取B为180mm。折流板数10(块)折流板间距传热管长49118090001BN折流板圆缺面水平装配。3.3.5.2接管壳程流体进出口接管:取接管内煤油流速为smu/0.1,则接管内径为)(muVd082.00.114.30.78136001500044取标准管径为80mm。管程流体进出口接管:取接管内循环水流速smu/0.1,则接管内径为)(muVd0855.00.114.3)2.9923600/(1500044取标准管径为80mm。3.4核算总传热系数3.4.1壳程对流传热系数对圆缺形折流板,可采用克恩公式14.03155.0PrRe36.0wooeood当量直径,由正方形排列得)(020.0025.014.3025.0785.0032.0234423422022mddtdoe壳程流通截面积)(00788.0032.0025.014.018.05.0121mtdBDSoo壳程流体流速及其雷诺数分别为)/(677.000788.07813600150000smu813.15925000664.0781677.002.0Re000ude普兰特准数11737.10141.0106664.01028.2Pr330pc粘度校正114.0w℃mW2