功率放大器的基本知识一般视听电路中的功率放大(简称功放)电路是在电压放大器之后,把低频信号再进一步放大,以得到较大的输出功率,最终用来推动扬声器放音或在电视机中提供偏转电流。一、功率放大电流的特点对功放电路的了解或评价,主要从输出功率、效率和失真这三方面考虑。1、为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高。电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管。由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用。2、从能耗方面考虑,功放输出的功率最终是由电源提供的,例如收音机中功放耗电要占整机的2/3,因此要十分注意提高电路效率,即输出功率与耗电功率的比值。3、功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。功放管的工作点选择不当,输出会有严重失真。二、常用功率放大电路的原理单只三极管输出的功放电路输出小、效率低,日用电器中已很少见。目前常采用的是推挽电路形式。图1是用耦合变压器的推挽电路原理图。它的特点是三极管静态工作电流接近于零,放大器耗电及少。有信输入时,电路工作电流虽大,但大部分功率都输出到负载上,本身损耗却不大,所以电源利用率较高。这个电路中每只三极管只在信号的半个周期内导通工作,为避免失真,所以采用两只三极管协调工作的方式。图中输入变压器B1的次级有一个接地的中心抽头。在音频信号输入时,B1次级两个大小相等、极性相反的信号分别送到BG1和BG2的发射结。在输入信号的正半周时间里,BG1管因加的是反向偏压而截止,只有BG2能将信号放大,从集电极输出;而在信号负半周,BG1得到正高偏压,能将这半个周期的信号放大输出,而BG2却截止。电路中的两只三极管虽然各自放大了信号的半个同期,但它们的输出电流是分先后通过输出变压器B2的,所以在B2的次级得到的感应电流又能全成一个完整的输出信号。这个功放电路中,为了解决阻抗匝配和信号相位等问题,输入与输出变压器是不可少的。但是,优质变压器的制作在材料和工艺上都比较困难,它本身总还要消耗一部分能量,降低电路的效率,而且变压器的频率特性不好,使电路对不同频率信号输出很不均匀,会造成失真,所以为了提高功放质量,人们更多地使用无变压器(OTL)功率放大电路。图2是互补对称推挽功放电路原理图。这里用了两只放大性能相同,而导电极性相反的三极管(称为互补管)。图中BG1是NPN管。放大器输入交流信号的正半周时,对BG1管来说,基极电压为正极性,发射极为负极性,发射结有正向偏压,三极管能够工作。但BG2却因发射结加了反向偏压而截止。因此,信号的正半周由BG1管放大。在信号负半周时,情形正相反,BG2管能够工作,将信号的负半周放大。放大后的信号由两只三极管轮流送出,在扬声器上重新合成完整的信号。三实际电路分析推挽电路中的两只三极管各放大信号的半个周期,这就要求两管放大性能相近(β值相差10%以内),否则放大后的信号两半周期幅度不同,将出现明显失真。交越失真也是推挽电路的特有问题。象上面原理图中的三极管都没有加静态偏流,在输入信号很弱时,三极管放大能力很小,甚至会因发射结不能导通而失去放大作用。这样每当输入信号幅度接近零时,也就是在两只推挽管轮换工作开始和终了的时候,输出信号就不能很好衔接,出现严重失真。为了解决这些问题,在许多实际应用电路中,都要为三极管加上很小的正偏压,使电路既高效又能减小失真。图3是收音机中常用的功放电路。它的静态工作电流由偏置电阻R8调整,一般两管总静态集电极电流为4~8mA。R10为负反馈电阻,用以减小失真并降低对三极管“配对”要求。为了减小输入信号在R9、R10这两电阻上的损失,它们的阻值都比较小。电容人C7用来改善音质。图4是红岩牌电视机伴音功放电路。与原理图3相比,它有下面几处不同:原理图中用两组电源供电,实际使用上很不方便,这里在负载扬声器上串入一只大容量电容C64。对音频电流来说,C64可以看成是通路。输入信号正半周时,BG13管的输出电流通过扬声器对是C64充电,在它上面产生极性“左正右负”的电压。在信号负半周时,BG13截止,电容C64即通过BG14和扬声器放电,充当了BG14的电源。这样只用一组电源,就能使电路正常工作。为了减小失真,电路也要为三极管提供静态电流。电阻R73既是前级电压放大管BG12(图中未画出)负载的一部分,又是互补功放管的基极偏流电阻。当BG12的输出电流通过R73,及二极管BG39时,在它们上面产生的电压降即为BG13、BG14两管发射结偏压之和(两管发射极电阻很小,可忽略)。这个电压的大小,决定了互补功放管的工作电流。R73阻值变化或是通过它的前级工作电流变化时,都会影响功放管的工作点,这是在调整时要注意的。与R73串联的二极管BG39是用来稳定互补管静态工作点的。它是一只硅二极管,电流通过它时在上面产生0.7V左右的电压降。环境温度升高时,二极管的正向电阻降低,两端的电压降也会减小,便使互补管的基极偏压跟着降低,抵消了工作电流因温升而增大的趋势。电阻R74与二极管并联,可防止二极管断路损坏时,功放管因电流过大而烧毁。电路中,电容C63有着很重要的作用。因为对音频信号来说,电源可以看成是一个通路,所以BG13的集电极和BG14一样是“交流接触地”的。如果没有C63,信号将从基极和集电极之间送入。这种以集电极为输入和输出信号公共端的“共集电极接法”增益较低,不宜用在功放电路中。接进C63以后,它对音频信号也可看为通路,所以输入信号对BG13是通过R72加在基极和发射极上;对BG14则是通过R73、R72加到基极和发射极上。这样,电路就变成了增益高得多的“共发射极接法”,大大提高了输出功率。电阻R71的作用是起隔离作用,不使DG13的集电极与发射极交流短路。简单易制的TDA2822M功放一般的集成功放电路外围元件较多且需要较大的散热器。本文介绍的功放电路简单,自制方便。电路如图5-107所示。用一块TDA2822M功放集成电路接成BTL方式,外围元件只有一只电阻和两只电容,不用装散热器,放音效果也令人满意的。集成电路TDA2822M为8脚双列直插式封装,如果买不到可用TDA2822代替,TDA2822的封装与TDA2822M相同,它们区别在于:TDA2822M从3V到15V均可工作,而TDA2822的最高工作电压只有8V。使用TDA2822必须把电压降到8V以下。R1的数值要求不拘,一般选用10k的碳膜电阻。C1可选用0.1uF的涤纶电容,C2为100uF/160V的电解电容。图5-108是其印制电路板图。由于电路简单,印制板可用铲刻法制作用水磨砂纸或牛皮纸沾少量水擦亮,用水洗净擦干,涂上一层松香酒精溶液,干后把元件直接焊在铜箔面即可。焊好后检查无误,然后先不接扬声器,接上电源,则正负输出端之间电压应小于0.1V。接上扬声器,用手触摸输入端,扬声器应发出较大的“嗡”声。这时即可输入信号试音。电路板不用钻孔,使用时应注意:由于本功放为直接耦合,所以输入信号不能带直流成分。如果输入信号有直流成分则必须在输入端串接一只10uF左右的电容隔开,否则将有很大的直流电流流过扬声器,使之发热烧毁。在实践中,若对图5-107再进行适当的改制则效果更为理想。改进后的电路如图5-109所示。在使用中发现,音量开得最大时TDA2822M发热烫手,于是给TDA2822M制作了散热器,如图5-110所示。散热器用厚lmm,长38mm,宽25mm的铝片制成。并在散热片上开5~6个长10mm,宽lmm的槽,再把做热片沿虚线折成“口”形。装散热器时先在TDA2822M上放点硅脂(硅脂可剖开3AX31或3AX81管壳中取)。按图5-111(a)用细线绑扎紧即可。应注意的是把TDA2822M的引脚数写在散热片的侧面,以免焊接时出错。加散热器后,音量开至最大散热器只暖一点,散热效果不错。此法也可用于其它小集成电路的散热。我们用两个功放电路做成随身听立体声功率接续器,来推动两个小音箱,效果很好。其实哪里有你们复杂啊,我直接将管角连上,接上扬声器,音源,加上6~12V直流电一切OK了。不过换成不同的音源和扬声器,我发现2822还行。做起来简单,成本也低,比市场上买的那种便宜的有源音箱强多了。音响知识栅顶是舞台上部不可缺少的重要设施之一,是舞台上部悬吊设备安装、调试、维修的工作层面,因此栅顶设计的水平直接影响剧场的使用功能。面积同样大小的舞台,栅顶设计得好,就能多安吊杆,设计得不好就要少装吊杆。当然栅顶设计的好坏与舞台上部的构造有着密切的关系,它与屋架选用的形式、滑轮梁的数量和布置、天桥的宽度、悬吊设备的品种、数量、位置、荷载都有直接关系。因此在做舞台上部结构设计之前,必须先由业主和使用单位提出比较详尽的设备型号、数量和工艺设计,再以此为依据展开结构设计,这才是合理的设计步骤。过去许多剧场都把栅顶和滑轮梁做在舞台屋架的下弦,这样做设计和施工都比较省事,而且能降低一些造价,然而由于建筑人员不了解舞台设备的技术参数,所以给舞台悬吊设备的安装、调试和使用中的检修都造成极大的困难,甚至影响舞台艺术水平的提高,实在得不偿失。如何避免损坏和烧毁扬声器一般人会认为是音量开得太大声了扬声器会受不了,因而把扬声器弄坏,其实不然,有许多种情况都可能,而且,有错误的概念。现在就分别列举几个情况及理由,让你避免扬声器损坏和烧坏的危险。首先我们要更正一个错误观点,许多人认为功放的功率大于扬声器的功率,就会使扬声器烧毁,这是错误的。而是由于功放的功率小于扬声器,才会烧毁扬声器。这是功率不够时波形失真产生切顶,这样产生了直流成分,如果发现扬声器在开机时,有响声并且音盆有起伏,说明有直流成分。有直流成分音圈就会发热,也就是烧毁的原因。有人会问:那功放功率大时扬声器会怎样?这也是要告诉大家的一点,音量增益一定要控制好,在调试时音量开足也不要超过扬声器的最大值,否则轻时使扬声器冲程过大,损坏扬声器,重时使音盆打坏。高音的分频点一定要准确,如果分频点过低,有低频成分,高音就会发热烧毁。再有用功放推动的高音,一定要有高音保护电路,吸收多余功率,否则音量过大时,瞬态电流过大,会烧毁高音。千万记得音量由小至大慢慢加,别一口气开大。音量开得太大声固然会失真容易损坏扬声器,另一种情况就是这种情况也会把扬声器损坏。建议喜好大音量的使用者要选购大功率的功放,让扬声器功率吃饱,在不失真情况下工作。功放如果有直流输出,那一定会烧掉低音扬声器,甚至极少数的高音扬声器也会烧掉。原因是低音(或其他音路)扬声器分音路径上没有电容器隔离直流,直流一输出就像把直流电通入扬声器中,连分音器线圈一起烧得焦黑。因此选购功放时千万注意,要先用电表测量前级和後级的输出端是否有直流输出,如果前级有直流输出也有可能经由後级再放大输出把直流传入扬声器。这也是提醒大家,不要买没有质量保证的功放。万一您没有发现有此状况,那也许烧掉您高级的扬声器。扬声器材料对声音的影响扬声器基本上由驱动单元,分音器和声箱构成,这三部分的设计固然重要,所用的材料对音质也有密切关系,假如改变其中一部分材料其馀保留不变,声音必然会有差别,这个差别可能非常明显,有些爱自己动手的发烧友试用不同的材料代替原来的用料,例如给分音器换上“补品级”电容或用发烧线替换原有的接线,有些能令音质改善,亦有些破坏了原来的声音平衡。零件影响音质是一种不可捉摸的事,你以为更换了补品零件会改善声音,有时却相反,原来的几种零件配搭音质或平衡反而更佳,这点可能是设计时已经过了仔细试验达成最理想的零件配搭。发烧友可以自己作试验,但一经如此就会失掉代理商的保用服务,你把原来零件任意更改,出了问题当然由你自己负责。驱动单元驱动单元俗称喇叭,在构造用料方面有几点值得特别注意,电动式喇叭的振膜(中及低音喇叭的振膜或称音盆)材料有几种,纸振膜历史悠久,取其质轻和具有适当的阻尼特性,至禽仍有多家名厂坚持采用,但纸振膜易受潮湿霉烂或变形,它的表面硬度低,不能产生高辐射声波速度