动力学、振动与控制学科未来的发展趋势.txt两个男人追一个女人用情浅的会先放弃。两个女人追一个男人用情深的会先放弃。╰︶ ̄—你的话,我连标点符号都不信男女授受不亲,中国哪来13亿人口。瀚海星云--文章阅读[讨论区:System_Control]--------------------------------------------------------------------------------发信人:robust(乐百士),信区:System_Control标题:动力学、振动与控制学科未来的发展趋势发信站:瀚海星云(2004年03月03日11:09:16星期三),站内信件动力学、振动与控制学科未来的发展趋势胡海岩1孟庆国2张伟3孟光4赵跃宇5李俊峰61南京航空航天大学结构工程与力学系,南京2100162国家自然科学基金委员会数理科学部,北京1000853北京工业大学机电学院,北京1000224上海交通大学振动、冲击与噪声国家重点实验室,上海2000305湖南大学工程力学系,长沙4100826清华大学工程力学系,北京100084摘要对近年来动力学、振动与控制的研究进展作了简要回顾,概述了非线性动力学与振动主动控制这两个研究热点的现状。提出了世纪之初应关注的若干研究前沿,即高维非线性系统的全局摄动法、全局分岔和混沌动力学,高维强非线性系统分岔与混沌动力学的实验研究,非线性时滞系统的动力学,流体-弹性体-刚体耦合系统动力学与控制,碰撞与变结构系统动力学,微机电系统动力学。最后,对我国动力学、振动与控制的发展提出了一些建议。1前言近年来,传统的一般力学学科以动力学、振动与控制为主要内涵,在研究深度和广度上都取得了重要进展。在国际范围内,动力学、振动与控制呈现一派欣欣向荣景象。通过向数学、物理学等基础学科借鉴,与计算机、测控技术相结合,与航天、航空、机械、车辆、船舶、土木等工程学科融合,动力学、振动与控制在研究方向和研究内容上发生了重大变化,新的研究领域不断涌现,研究和实验手段更加现代化。例如,通过学科交叉产生了柔体、刚体和液体耦合系统的动力学、智能结构动力学、微机电系统动力学等新的研究方向;在一些研究分支基础上提炼出了带有共性的研究方向,如Birkhoff和Hamilton系统动力学,高维非线性系统的全局摄动、全局分岔和混沌动力学,非光滑系统的动力学,时滞系统的非线性动力学等。当代科学技术发展中提出的大量实际问题,使动力学、振动与控制领域的学者面临许多紧迫任务,需要迎接各种挑战,不断推陈出新。为了深入探讨动力学、振动与控制在世纪之初的发展方向和学科前沿,加强海内外青年学者之间的学术交流,由国家自然科学基金委员会数理科学部发起,国家自然科学基金委员会数理科学部和中国力学学会主办,海军工程大学承办的“动力学,振动与控制青年学者学术研讨会”于2002年3月25~29日在海南省海口市召开,海内外20多位从事动力学、振动与控制研究的青年学者出席了会议。与会代表对于动力学、振动与控制的一些发展趋势、研究方向和前沿问题进行了热烈的研讨,并且提出了不少好的设想和建议。通过研讨,大家认为要使我国在动力学、振动与控制的研究水平上进入世界一流,应该注意以下问题:(1)当今世界,科学技术发展迅速。动力学、振动与控制早期作为从Newton,Layrange和Hamilton等人发展起来的一门基础学科,随着科学与工程技术的迅速发展,时至今日,动力学、振动与控制主要已经发展成为一门从工程中提炼出的技术科学分支。因此,动力学、振动与控制包含了比较多的基础研究内容,应该有超前发展,并且需在研究内容和研究方向上不断推陈出新,与时俱进。青年学者、特别是正在成长为学术带头人的青年学者,要认准科学技术发展的大方向,明确自己的定位,瞄准国际上动力学、振动与控制的研究前沿去选择和开辟新的研究领域。(2)对动力学、振动与控制的研究应该有所侧重,一是大多数的动力学、振动与控制问题应该来源于工程实际问题,应从工程中提炼出动力学问题及其模型,然后运用并发展各种方法加以研究和解决。二是要注重对于解决动力学、振动与控制问题的基本方法的研究,从一些迫切需要、但又束手无策的问题着手,寻找新的突破点。上述两个方面相辅相成,体现了动力学、振动与控制研究学科“顶天立地”的特色。从事前者的研究队伍比较大,而后者的研究队伍要少而精。(3)要从整个力学学科的基础这一高度来充分认识分析动力学和非线性动力学的重要地位,从不同的分支学科和不同的角度研究分析动力学和非线性动力学问题。分析动力学和非线性动力学的突破和进展,往往可以带动其它分支学科的发展,并且为工程问题的解决提供基本方法和理论。(4)要更加深入地认识到动力学、振动与控制学科中各个分支学科在理论和方法上是相互依赖、相互渗透和相互贯通的,要用系统和大系统的观点来考察和研究动力学、振动与控制问题。动力学、振动与控制的研究范畴应该扩展到下述过程:综合多学科的知识、方法和实验技术来建立系统(受控系统)的动力学方程→应用并发展新的动力学理论,通过解析、数值和实验相互支持的方法进行分析→对系统进行被动、主动或半主动控制设计→在计算机支持的虚拟现实等环境下形成系统设计方案论证和具体设计。(5)从事动力学、振动与控制研究的学者要尽量研究其它工程学科尚不能够解决的复杂和关键问题,为工程问题的解决提供研究方法和解决方案。既要借鉴数学和物理学等基础学科的研究成果,又要在研究内容和方法上与这些学科有显著区别。因此,动力学、振动与控制学科所研究的问题要有工程背景和应用前景,这样才能有学科自身的生存和发展空间。(6)要扩大学科涵盖面,扩大研究队伍,加强国际合作和交流。动力学、振动与控制要从传统的研究领域向新的研究领域扩展,从离散系统扩大到连续系统、流固耦合系统等。学科交叉与综合是产生新方向和新学科的土壤,动力学、振动与控制要不断的容纳新的研究内容。海内外从事动力学、振动与控制研究的华人青年学者要相互合作和支持,组成高水平的研究团队。与会代表认为,在未来的十年中,动力学、振动与控制的下述研究前沿值得引起更多的青年学者重视:(1)高维非线性系统的全局摄动法、全局分岔和混沌动力学;(2)高维强非线性系统分岔与混沌动力学的实验研究;(3)时滞非线性系统的动力学理论及其应用;(4)流体-弹性体-刚体耦合系统动力学与控制;(5)碰撞与变结构系统动力学;(6)微机电系统动力学。2研究现状近十年来,国际范围内对动力学、振动与控制的研究非常活跃。从比较经典的分析动力学到与当代信息技术紧密结合的计算动力学、动力学控制,从以探索未知世界为主的非线性动力学到以工程应用为主的振动测试与控制技术,都获得了许多重要成果。在众多的研究领域中,非线性动力学和振动主动控制是近年来公认的两个研究热点。2.1非线性动力学真实动力系统几乎总是含有各种各样的非线性因素,诸如机械系统中的间隙、干摩擦,结构系统中的材料弹塑性和黏弹性、构件大变形,控制系统中的元器件饱和特性、控制策略非线性等等。通常在某些情况下,线性系统模型可提供对真实系统动力学行为的很好逼近。然而,这种线性逼近在许多情况下并非总是可靠的,被忽略的非线性因素有时会在分析和计算中引起无法接受的误差,使理论结果与实际情况有着失之毫厘,差之千里之别。特别对于系统的长时间历程动力学问题,即使略去很微弱的非线性因素,也常常会在分析和计算中出现本质性的错误。非线性动力学理论的研究和发展已经经历了一个多世纪,在新世纪之初,为了使非线性动力学理论得到更好的发展,非常有必要回顾一下非线性动力学研究和发展的历史。非线性动力学理论的发展大致经历了三个阶段。第一个阶段是从1881年到1920年前后,第二阶段从20世纪20年代到70年代,第三阶段从20世纪70年代至今。人们对于非线性系统的动力学问题的研究可以追溯到1673年Huygens对单摆大幅摆动非等时性的观察.第一阶段的主要进展是动力系统的定性理论,其标志性成果是法国科学家Poincare从1881年到1886年期间发表的系列论文“微分方程定义的积分曲线”,俄罗斯科学家Liapunov从1882年到1892年期间完成的博士论文“运动稳定性通论”,以及美国科学家Birkhoff在1927年出版的著作“动力系统。第二阶段的主要进展是提出了一系列求解非线性振动问题的定量方法,代表人物有俄罗斯科学家Krylov、Bogliubov,乌克兰科学家Mitrpolsky,美国科学家Nayfeh等等。他们系统地发展了各种摄动方法和渐近方法,解决了力学和程科学中的许多问题。在这个阶段中抽象提炼出了若干著名的数学模型,如Duffing方程、vanderPol方程、Mathieu方程等,至今仍被人们用以研究非线性系统动力学现象的本质特征。从20世纪60~70年代开始,原来独立发展的分岔理论汇入非线性动力学研究的主流当中,混沌现象的发现更为非线性动力学的研究注入了活力,分岔、混沌的研究成为非线性动力学理论新的研究热点。俄罗斯科学家Arnold和美国科学家Small等数学家和力学家相继对非线性系统的分岔理论和混沌动力学进行了奠基性和深入的研究,Lorenz和Ueda等物理学家则在实验和数值模拟中获得了重要发现。他们的杰出贡献使非线性动力学在20世纪70年代成为一门重要的前沿学科,在动力学、振动与控制学科的创立和发展过程中都占据了重要的地位,成为当代动力学、振动与控制研究的一个重要分支。近年来,非线性动力学在理论和应用两个方面均取得了很大进展。随着非线性动力学理论和相关学科的发展,人们基于非线性动力学的观点以及现代数学和计算机等工具,对工程科学等领域中的非线性系统建立动力学模型,预测其长期的动力学行为,揭示内在的规律性,提出改善系统品质的控制策略。一系列成功的实践使人们认识到:许多过去无法解决的难题源于系统的非线性,而解决难题的关键在于对问题所呈现出的分岔、混沌和分形等复杂非线性现象具有正确的认识和理解。研究非线性系统动力学的方法可以分为定性方法(或几何方法)和定量方法两大类。定性方法一般不直接求解非线性动力系统,而是从非线性系统的动力学方程入手,研究系统在状态空间的动力学行为。由于非线性微分方程一般没有统一的精确解法,所以定量方法只研究各种近似解法,例如平均法、KBM法、多尺度法、谐波平衡法等等。定性方法和定量方法可以相互补充,定性方法可以得到系统解的拓扑结构和系统参数之间的关系,定量方法可以得到确定参数时的数值解。在研究各种复杂的非线性动力学问题时,两种方法缺一不可。随着计算机代数、数值模拟和图形技术的进步,非线性动力学理论正在从低维向高维发展,非线性动力学理论和方法所能处理的问题规模和难度不断提高,已逐步接近实际系统。在工程科学界,以往研究人员对于非线性问题绕道而行的现象已经发生了变化。人们不仅力求深入分析非线性对系统动力学特性的影响,使系统和产品的动态设计、加工、运行与控制满足日益提高的运行速度和精度需求;而且开始探索利用分岔、混沌等非线性现象造福人类。科学理论与工程技术总是相互依赖和相互促进的,新的科学理论可以阐明并揭示出工程问题中未被认识的复杂现象和本质。非线性动力学理论在高科技领域和工程实际问题中的应用,已经引起了各领域科学家们的广泛关注,并使这门学科有了强大的生命力。在工程系统中,有许多动力学问题都是非线性的,它们的数学模型和运动方程可以用非线性动力系统来描述。以下仅列出若干机械、结构工程师感兴趣的动力学、振动与控制问题:(1)航天飞机和空间站中柔性机械臂、卫星天线和太阳能列阵的非线性振动;(2)航天器姿态的混沌运动;(3)系绳卫星的非线性振动与控制;(4)柔性机器人和弹性机构中的非线性振动;(5)内燃机中曲轴系统的非线性扭转振动、气门机构的非线性振动和离心摆式减振器的非线性振动;(6)带有裂纹的大型转子和大型发电机组的非线性振动;(7)滑动轴承中的油膜涡动;(8)齿轮传动和黏弹性带传动中的非线性振动;(9)金属切削过程的非线性颤振和控制;(10)振动机械中的非线性动力学;(11)高速机车行驶稳定性和蛇行运动的控制;(