X第1页动态系统是线性系统的条件动态系统不仅与激励{f(t)}有关,而且与系统的初始状态{x(0)}有关。完全响应可写为y(t)=T[{f(t)},{x(0)}]零状态响应为yzs(t)=T[{f(t)},{0}]零输入响应为yzi(t)=T[{0},{x(0)}]X第2页当动态系统满足下列三个条件时为线性系统:②零状态线性:T[{af(·)},{0}]=aT[{f(·)},{0}]T[{f1(t)+f2(t)},{0}]=T[{f1(·)},{0}]+T[{f2(·)},{0}]或T[{af1(t)+bf2(t)},{0}]=aT[{f1(·)},{0}]+bT[{f2(·)},{0}]③零输入线性:T[{0},{ax(0)}]=aT[{0},{x(0)}]T[{0},{x1(0)+x2(0)}]=T[{0},{x1(0)}]+T[{0},{x2(0)}]或T[{0},{ax1(0)+bx2(0)}]=aT[{0},{x1(0)}]+bT[{0},{x2(0)}]①可分解性:y(·)=yzs(·)+yzi(·)=T[{f(·)},{0}]+T[{0},{x(0)}]X第3页例1:判断下列系统是否为线性系统?(1)y(t)=3x(0)+2f(t)+x(0)f(t)+1(2)y(t)=2x(0)+|f(t)|(3)y(t)=x2(0)+2f(t)解:(1)yzs(t)=2f(t)+1,yzi(t)=3x(0)+1显然,y(t)≠yzs(t)+yzi(t)不满足可分解性,故为非线性(2)yzs(t)=|f(t)|,yzi(t)=2x(0)y(t)=yzs(t)+yzi(t)满足可分解性;由于T[{af(t)},{0}]=|af(t)|≠ayzs(t)不满足零状态线性。故为非线性系统。(3)yzs(t)=2f(t),yzi(t)=x2(0),显然满足可分解性;由于T[{0},{ax(0)}]=[ax(0)]2≠ayzi(t)不满足零输入线性。故为非线性系统。X第4页例2:判断下列系统是否为线性系统?xxfxxtyttd)()sin()0(e)(0解:xxfxtyxtytzstzid)()sin()(),0(e)(0y(t)=yzs(t)+yzi(t),满足可分解性;T[{af1(t)+bf2(t)},{0}]xxfxxxfxxxfxfxtttd)()sin(bd)()sin(ad)](b)()[asin(0201021=aT[{f1(t)},{0}]+bT[{f2(t)},{0}],满足零状态线性;T[{0},{ax1(0)+bx2(0)}]=e-t[ax1(0)+bx2(0)]=ae-tx1(0)+be-tx2(0)=aT[{0},{x1(0)}]+bT[{0},{x2(0)}],满足零输入线性;所以,该系统为线性系统。